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PREFACE

The Breadboard Study Phase of the Wet Chemistry Instrument

Prototype described in this document was undertaken for the National

Aeronautics and Space Administration, Ames Research Center, under

Contract No. NAS2-7198. The study was under the direction of

Mr. G. Thorley, Technical Monitor, NASA/Ames Research Center.

The experimental concepts, chemistry of the experiment, procedures

and processes were provided by the experimenters, Mr. G. E. Pollock,

Dr. R. D. Johnson and Dr. K. Kvenvolden, NASA/Ames Research

Center and Dr. S. L. Miller, University of California, San Diego.

We wish to acknowledge the many valuable discussions and contributions

of the experimenters, the Technical Monitor, and Mr. T. H. Harmount

of NASA/Ames Research Center.

The program at TRW Systems Group was performed by the

Instrument Systems Department under the direction of Dr. H. S. Suer.

Mr. S. L. Korn acted as Study Manager; Dr. R. J. Day was responsible

for the experimental investigations.
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1. INTRODUCTION

This document is the final report for a study of a Wet Chemistry

Instrument Prototype capable of detecting amino acids in planetary soil

samples. The program was carried out by TRW Systems for the

National Aeronautics and Space Administration, Ames Research Center

(NASA/ARC) under Contract No. NASZ-7198.

Experiments capable of analyzing amino acids in planetary soils

and of determining whether the amino acids are optically active are

important to establish whether life as we know it does currently exist

or has existed in the past on other planets.

Amino acids and their condensation products, the proteins and

peptides, are indispensable to the forms of life found on Earth, and the

identifying characteristic is their optical activity. The determination

of the optical purity of amino acids becomes, therefore, a suitable

candidate for a purely "chemical" life detection experiment, as com-

pared to the currently planned biology experiments in the Viking Lander

Biology Instrument (VLBI) which attempt to detect metabolic, growth

or reproductive activities of organisms. The presence or absence of

optically active or racemic amino acids in planetary soils should have

not only far-reaching consequences on present theories in biology, but

also on chemical evolution and geochemistry.

The purpose of the breadboard program which was carried out

between August 1972 and January 1974 was to conduct tests and design

updates to provide quantitative information on the performance of a

flight-type wet chemistry instrument system. To accomplish this, a

breadboard based on an earlier flight instrument concept, presented

in the Final Report for NASA Contract NAS2-6218 (TRW Report

No. 16660-6001-RO-00), was designed, fabricated, and tested. Various

laboratory studies and materials compatibility tests were carried out

in support of the breadboard design. Based on breadboard program

results, the earlier flight design concept was updated and revised.

1-1



In the 14th month of the study NASA/ARC directed a change from

Processing Sequence No. 1 (described in the Appendix) to a new baseline

Processing Sequence No. 2 (described in the Appendix). All breadboard

testing was conducted using Processing Sequence No. 1 which requires

an acid hydrolysis directly on the soil sample while Processing Sequence

No. 2 which hydrolyzes a water extract of the soil was adapted for the

updated flight design concept presented herein.

This report is divided into five major subsections. Section 2,

Summary summarizes the basic breadboard system and flight system

concepts, the breadboard program objectives, and the major program

accomplishments. Also given are a test results and flight design

summary, and the conclusions and recorrnendations resulting from the

program.

Section 3, Breadboard Test Program, provides a description of

the major breadboard component design and of the total breadboard

system. This is followed by a detailed discussion of the breadboard

test results in the order of component tests, system tests, and supporting

laboratory studies.

At the end of each appropriate section, the impact of the change

from Processing Sequence No. 1 to the new baseline Processing

Sequence No. 2 is discussed. Remaining problems are pointed out and

recommendations for further investigations are given.

Section 4, Flight Design Update, provides the updated system

requirements and instrument system definition. In addition, the

instrument system design and the design of all major subsystems and

components are described, and layout drawings are provided. A

discussion of modification to the baseline instrument concept, to pro-

vide improvement in instrument performance and to broaden the

instrument analysis capabilities, is also included in this section. A

summary of major conclusions of this study is presented in Section 5,

Conclusions and Recommendations, which also includes recommendations

for further development of the instrument.

A brief Appendix, Processing Sequences, concludes this Final

Report.
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2. SUMMARY

The chemical approach of life detection carried out with the wet

chemistry instrument consists of searching for optically active amino

acids in planetary soils.

The amino acids present in terrestrial soils, and it is expected also

in planetary soils, are at least partially in the form of biopolymers (pep-

tides and proteins). Thus, the first step in the separation and detection

is to break down the polymers into the individual amino acids by acid

hydrolysis. In Processing Sequence No. i the hydrolysis is carried out

directly on the soil. (In the new baseline Processing Sequence No. 2 the

hydrolysis is carried out on a water extract of the soil. )

Acidic hydrolysis carried out directly on the soil sample precludes

any loss of material and is gentle enough to minimize the destruction or

racemization of the amino acids. The soil can be removed by filtration

and the excess acid (HC1) removed by evaporation. The product of the

soil hydrolysis contains materials such as organic acids, neutral organic

compounds, and salts which may interfere in the subsequent steps of the

analysis. The interfering materials are separated from the amino acids

through precipitation with HF/NH4 0H and subsequent desalting in an ion

exchange column. (Processing Sequence No. 2 produces significantly less

interfering material, and the precipitation step can be eliminated and

desalting is accomplished with an ion exchange column only. )

The amino acids in a solution at a suitably low pH are injected onto

a strong cation exchange resin column in the acid form. They are

absorbed as ammonium ions RNH3
+ while any anions and neutral organic

species are passed through. Following this, the amino acids are washed

off the column with NH40OH. The NH40OH can be removed by evaporating

the solution to dryness, leaving a residue of relatively pure amino acids.

Once the amino acid is extracted and purified, its enantiomers are

resolved chemically by derivatization with an optically active esterification

reagent, and after acylation the enantiomers separated by means of a gas

chromatograph based on the differences in the properties of the resultant

diastereoisomers. Gas chromatography has proven to be a sensitive and

simple method for separating the individual amino acid derivatives,

2-1



identifying them by a characteristic retention time, and resolving the

diastereoisomers.

The objective of the wet chemistry instrument breadboard program

has been to obtain data on the performance of a prototype instrument system

comparable to that which would be obtained from an actual flight instrument.

The following tasks were carried out to accomplish this objective:

" A breadboard based on the flight instrument concept presented
in the Final Report for NASA Contract NAS 2-6218 was designed
and fabricated.

* Laboratory materials compatibility tests to support breadboard
design were carried out.

* Step-by-step evaluation of the performance of each breadboard
component for its function in the process sequence was conducted.

* Laboratory tests in glassware for control analyses were carried
out.

* Breadboard performance demonstration tests with ratiotracers,
NASA/ARC supplied soils, and amino acid-free soils were
accomplished.

* The flight design concept based upon the breadboard program
results and the new baseline Processing Sequence No. 2 was
revised and updated.

A major accomplishment of this study was the demonstration that the

updated flight instrument concept is basically able to meet the experimen-

tal objectives specified in NASA/ARC Specification A-16231, Rev. 3 from

October 15, 1973, under the conditions specified therein. Several remain-

ing problems were identified, and solutions to those problems are proposed.

The design of the wet chemistry instrument system was revised to

incorporate the change from three sets of processing cells in the previous

instrument concept to just one set of reusable cells, and also to meet the

new interface requirements which, with minor exceptions, are identical

to the current VLBI interface. Major instrument components such as the

processing cells and the ion exchange column are flight-weight versions

of the equivalent components used successfully in the breadboard. Design

concepts and detailed designs proven on VLBI have been incorporated when

deemed appropriate. The proposed use of gas actuated tantalum diaphragm

valves and the presentation of a conceptual design is an important step
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towards solving the valve problem on the wet chemistry instrument, which

was identified during this study.
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3. BREADBOARD TEST PROGRAM

Our basic approach to the breadboard test program has been to

conduct a series of tests on the breadboard instrument to provide test

data comparable to that which would be obtained from a flight instrument.

The objective of these tests.has been to determine the performance of the

instrument - initially at the component level, with modifications made in

each unit as required. As the functionality of each cell was demonstrated,

the units were combined ultimately up to complete system level. In both

component level and system level testing, experiments were run to

determine the percent recovery of amino acids, the sensitivity for trace

amounts of amino acids, the presence or absence of material interfering

with gas chromatographic analysis and the absence of racemization. It

was intended that the test results would demonstrate that the materials

and methods used to carry out the processing, derivatization and

analysis steps in an automated spacecraft instrument would not signifi-

cantly degrade the experimental results demonstrated with laboratory

glassware and that the various requirements pertinent to a flight

instrument could be satisfied.

For these tests, Processing Sequence No. 1 listed in the Appendix

was used, which consisted of 6N HCI hydrolysis on the soil in the

hydrolyzer unit, filtration into the evaporator unit, evaporation,

redissolution in water, HF/NH40OH (initially NaOH) desalting, filtration

into the ion exchange column, washing of the IEC, elution of the amino

acids with an ammonia solution into the derivitizer unit, evaporation to

dryness and derivatization with 2-butanol/HC1 and then by trifluoracetic

anhydride in methylene chloride, evaporation of the derivatives into a

gas chromatograph column and GC analysis. This processing scheme

results in the exposure of the processing cells to much more severe

conditions than those of the new baseline process which is Processing

Sequence No. 2, listed in the Appendix.

In addition to breadboard testing, a variety of supporting tests

were conducted. Standards and methods were established for radiotracer
work to follow breadboard and procedural losses. A series of material
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compatibility tests were run on candidate container, seal and valve

materials. The need and procedures for rigid reagent clean-up were

established for low level amino acid work. A standard protein, ribo-

nuclease, was run. A long-term (8-month) storage test was conducted on

racemic 2-butanol/HCl in a sealed glass ampoule. Soil tests were run

in laboratory glassware on different soils provided by NASA/ARC.

Racemic 2-butanol was used for derivatization of samples prior to

gas chromatographic analysis for most of the testing for convenience,

ease in interpretation of the chromatograms, and reduction of costs.

Tests using derivatization with optically active 2-butanol were carried

out which demonstrated that there were no observable racemization

effects in the breadboard or lab processing.

3. 1 BREADBOARD DESIGN

The breadboard design was based on the original flight design con-

cept reported in TRW Final Report No. 16660-6001-RO-00 and developed

for Processing Sequence No. 1 in which an acid hydrolysis was carried

out directly on the soil. The design duplicated, as closely as practicable,

all aspects of the flight design which might affect instrument performance,

such as internal cell geometry, interconnecting valves and plumbing,

materials exposed to the analysis process, sequencing, and vent pressures.

In the breadboard, one set of cells was used which had to be capable of

undergoing in excess of 50 analyses. The extensive use of the breadboard

required certain modifications to the hardware to accommodate extended

operational lifetime, cleaning, servicing, and parts replacement. Simu-

lated flight type components, such as hand operated valve simulators were

used in some places, and commercial components such as some valves,

lines, and detectors were incorporated where they did not affect the

process.

A schematic of the breadboard is shown in Figure 3-1. Figure 3-2

shows a photograph of the breadboard, which was mounted on an 18-by-30

inch panel which was self-supporting and which could be used on a

laboratory bench counter top. The set of processing cells (hydrolyzer,
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Figure 3-1. Wet Chemistry Prototype
Instrument Schematic
(Initial System Test Version)
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evaporator, ion exchange column and derivatizer) were mounted on the

front side of the panel. All of the hand valves required for running an

analysis were operated from the front panel. Service valves, lines,

reagent injectors and electrical connectors and take-apart fluid joints

were provided for each test cell to permit cell removal for cleaning and

servicing even while an analysis was in progress elsewhere on the

breadboard. Soil loading was accomplished manually through the top

plate of the hydrolyzer.

The breadboard could be used with either a flight prototype self-

heated gas chromatographic column and flame ionization detector or with

a commercial gas chromatograph.

3. 1. 1 Breadboard Component Design

The breadboard component design and test results reported herein

are directly applicable to the new flight design concept even though the

breadboard was designed for the Processing Sequence No. 1. The flight

design described in Section 4 of this report is based on the Processing

Sequence No. 2, which has many advantages including easier filtration

requirements, fewer and less corrosive reagents, and significantly less

interfering material, especially from the smaller ion exchange column.

Differences between the two processing sequences, however, do not

signficantly impact the engineering design of the flight instrument com-

ponents, even though the function of the first two cells is changed

somewhat.

3.1.2 Hydrolyzer

The design of the breadboard hydrolyzer is shown in Figure 3-3.

The processing cell in the new flight design that uses the same internal

geometry and material is the extractor.

Some features peculiar to the breadboard hydrolyzer are the

increased wall thickness to increase life and to facilitate serviceability.

The soil inlet port accepts a closure plate in place of a gas actuated

cover plate since the soil is loaded manually, and the valve at the outlet

is a hand-operated solenoid valve simulator. The fluid joint of the inlet

port for the HCI calibration amino acid injection is an M.E.R. commercial
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fitting to allow easy removal of the cell from the breadboard. Hydrolyzer

parts and the assembled breadboard cell are shown in Figure 3-4.

3.1.3 Evaporator

The breadboard evaporator is shown in Figures 3-5 and 3-6. The

processing cell in the flight design that uses the same internal geometry

and material is the hydrolyzer/evaporator.

Features peculiar to the breadboard evaporator are again the

increased wall thickness to increase life and to facilitate serviceability,

the hand operated solenoid valve simulators at the inlet and outlet, and

the commercial M. E. R. fittings at the fluid joints to allow easy removal

of the test cell from the breadboard. The evaporator layout in Figure 3-5

does not show modifications to the cell described in Section 3.2. 1.2.

After initial testing a cylindrical tantalum section was added between the

cell body and the head end plate to increase the volume of the cell by

24 milliliters. The purge tube was lengthened accordingly. In addition,

a tantalum spacer was installed downstream of the filter stack to reduce

the volume between the filter and the outlet valve.

3.1.4 Ion Exchange Column

The ion exchange column (Figures 3-7 and 3-8) consisted of a tanta-

lum cylindrical section with removable, flanged end pieces and Creavey

Seals to facilitate repacking and experimentation with different spring loads

on the packed resin bed. The only non-tantalum materials were the Teflon

filters used as bed retainers and the Teflon-coated retainer spring at the

IEC inlet. The size of the resin bed was 30 milliliters. Thirty milliliters

of resin was required to achieve adequate desalting in the No. 1 Processing

Sequence in which HCI hydrolysis was performed on the soil. Hand-

operated valve simulators were used at the inlet and outlet to facilitate

column reuse. The fluid joints were commercial M. E. R. fittings.

3. 1. 5 Derivatizer

The breadboard derivatizer layout is shown in Figure 3-9. It con-

sisted of an all tantalum cell with flanged head end accommodating four

hand-operated valve simulators. Originally the derivatizer was outfitted

with the prototype, hand-operated valve simulators which were used
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successfully on the other test cells and the IEC. It was determined,

however, that the valve seals on the derivatizer were responsible for high

background peaks in the gas chromatogram. The seal problem was

rectified by the use of hand-operated all tantalum diaphragm valves with

Teflon seats. Figure 3-10 shows the breadboard derivatizer with the all

tantalum valves.

3.1.6 Valves

Valves proposed for the original flight design (TRW Final Report

No. 16660-6001-RO-00) were modified VLBI solenoid valves with tantalum

front end for reagent compatibility. The valves used successfully on the

breadboard hydrolyzer, evaporator and ion exchange column were hand

operated solenoid valve simulators. The valve design concept was based

on available compatibility data which indicated that Viton elastomer was

satisfactory for all reagents except ammonia. Viton was also a preferred

selection because of its good high temperature characteristics. Fig-

ure 3-11 is a cross sectional schematic of the valve assembly. The valve

housing was fabricated of 316 Stainless Steel. The center shaft (pintle)

and valve body were machined from Tantalum. The poppet seal was

Teflon and the elastomeric seals were Viton E-60C initially. The shaft

seal was later replaced by an EPR O-ring and the static seal at the base

of the valve was changed to a Creavey seal. Figure 3-12 shows several

assembled hand-operated solenoid valve simulators.

Because of contamination problems on the derivatizer and after extensive

valve and system studies, a gas-actuated tantalum diaphragm valve was

selected for the new flight design, and hand-operated, all tantalum proto-

type diaphragm valves with Teflon seats were constructed and used on the

breadboard derivatizer. The hand-operated prototype tantalum valve is

pictured in Figure 3-13 installed on a test fixture. Figure 3-14 is an

exploded view of the component parts. A cross sectional schematic is

presented in Figure 3-15. The design is the result of several iterative

attempts to machine an integral diaphragm and housing that had a suffi-

ciently low force/stroke ratio to be functional. Because of the relatively

high spring rate of the machined diaphragm a screw jack is utilized to

actuate the valve to the open positions. The trapped knurled nut is
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Figure 3-10. Prototype Derivatizer, Shown With Hand-
Operated Tantalum Diaphragm Valves
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Figure 3-15. Tantalum Diaphragm Hand Valve Layout
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rotated approximately 90 degrees which lifts the screw and attached poppet

seal. A preloaded torsion spring serves to return the poppet and maintain

seal load on the valve seat when in the closed position. A ball detent

located at the top is provided to hold the nut in the open position. Fig-

ure 3-16 is a picture of the head end of the derivatizer with the four valves

in place. As can be noted, a small lever has been added to the actuator

nut to facilitate operation.

3. 1. 7 Self-Heated GC Column

The breadboard self heated gas chromatographic column is shown in

Figures 3-17 amd 3-18. The column assembly contains 200 feet of

0. 062-inch OD by 0. 030-inch ID 316 stainless steel tubing covered with a

0. 012-inch-thick Teflon tube to provide an electrically resistant coating

between adjacent coils. The column is wound on an aluminum mandrel

and installed in a thin-walled aluminum can. The can is packed with

aluminum oxide spheres (hollow) for thermal insulation. Commercial

feedthroughs are used for the thermocouples and power return electrical

lines. The thermocouples will provide measurement of longitudinal and

radial thermal gradients in the wound column. Power taps are located

at the center and ends of the column. Special insulated fittings which are

attached to the column with commercial swageloks are used to connect to

the derivatizer and detector.

This design differs from the flight version in the final report to

NASA/ARC Contract No. NAS2-6218 in several respects. For convenience,

Teflon tube is used for the column insulator instead of an insulating paint

such as conventionally used for solenoid coils. The column is wound on

an aluminum spool instead of directly on the packed insulating material

(Fiberfrax) in the flight design. This is to facilitate column replacement.

The column tubing used is thick-walled, commercially available chroma-

tographic grade tubing in place of the special order thin-walled tube in the

flight design.

3. 1.8 Reagent Injectors

In the breadboard, cylinders of Kel-F were used to contain the

reagents. For those applications where the volume of the injector was

important (such as for HC1, NaOH or NH 4 0H, HF, or TFA/MC), the

breadboard injector internal dimensions were like those for the previous
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Figure 3-16. Derivatizer Head End With Tantalum
Hand Valve s
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flight design. M. E. R. commercial laboratory valves were used instead

of the one-shot gas-actuated isolation valves for reasons of both cost and

serviceability. M. E. R. valves were also used at the upper end of the

injectors to provide fill ports for reagents and pressurant gas.

3.1.9 Flame Ionization Detector

A laboratory type flame ionization detector in a commercial gas

chromatograph was used for the breadboard testing.

3.2 BREADBOARD TEST RESULTS

Major results of the breadboard test program can be summarized

as follows:

1) No major problems were encountered with the hydrolyzer
and evaporator cells. Test results with both cells were
comparable with laboratory glassware results, and a high
degree of confidence in the adequacy of the design and com-
patibility of the basic cell material (tantalum) has been
established. Furthermore, there are indications that the

design and materials will function even better with Process
No. 2.

2) NH 4 0H was found to be superior to NaOH in neutralizing HF
in the precipitation step because of the greater ease of attain-
ing the desired pH with NH40H.

3) Tests with a 30-milliliters Biorad AG 50W-x8 (Dowex 50W)
200-400 mesh ion exchange column (IEC) showed better per-
formance than equivalent glassware columns. However, the
ion exchange resin was identified as a major soure of inter-
fering materials, leading to interference in the gas chroma-
tographic analysis. The need for cleanup immediately prior
to use via NaOH elution followed by HC1 regeneration was
established. The use of a 5-milliliter ion exchange column
with with Process No. 2 should greatly decrease the amount
of interfering material produced during ion exchange
desalting.

4) The complete absence of observable racemization effects
anywhere in the breadboard was demonstrated.

5) Some material incompatibilities were identified during test-
ing of the derivatizer; e.g., elastomeric valve seals and the
Creavey Seal used for the cell seal contributed to high back-
ground. These problems were rectified by using all tantalum
valves with Teflon seats and a tantalum/Teflon cell seal.

Some interference problems remain however, which are
associated with heating the derivatizer to evaporate the
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derivatives, obtained from samples derived from soils

processed in the breadboard system, onto the GC column.
At least one solution does exist for this problem.

6) Successful derivatizations of amino acid mixtures (25 nano-
mole levels) were performed after extensive cleaning and
vacuum bakeout of the derivatizer, although some interfer-
ence was still present in most tests.

7) Additional components that were identified as contributors of
interferring materials were the Teflon filters and possibly
the Teflon/Kel-F reagent containers.

8) Changing from Process No. 1 to Process No. 2 should
reduce or eliminate most of the remaining problems and
while further work is needed, we have a high degree of
confidence that the remaining problems can be solved and
that a flight instrument can be produced which will success-
fully carry out the experiment within the mission constraints.

3.2. 1 Component Tests

3. 2. 1.1 Hydrolyzer

Summary: The hydrolyzer was tested with soil-free blanks, with

radiotracer doped Waukena soil and with Ribonuclease on blank soil. All

functions of the hydrolyzer were successfully carried out and the test

results were comparable to conventional glassware results. Good amino

acid recovery (90 percent) and freedom from racemization or corrosion

effects were demonstrated. The only problems observed with the hydro-

lyzer were concerned with the Teflon filters which gave high background

blanks even after extensive clean up. The hydrolyzer was still in good

working order after more than 20 hydrolyses.

Detailed Test Results: Initial testing of the hydrolyzer consisted of

engineering proof, leak, and heater tests. The associated M. E. R. fittings

were checked as well. The M. E. R. fittings were hand-tightened only and

leak checked at 165 psig. All were bubble tight and all combinations were

checked; i. e., M. E. R. fittings in M. E. R. hand valve, M. E. R. fitting in

Kel-F injector head, M. E. R. fitting in TRW-machined tantalum compo-

nents and modified M. E. R. fitting, tantalum tube combination in a tanta-

lum component. The "O" rings in both of these applications can be

removed and replaced. Two assemblies consisting of 1/16 Teflon tube

and M. E. R. fittings at each end were hydrostatically tested to destruction.
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Both failed at approximately 1500 psig with rupture occurring in the Teflon

tube. Next, engineering oriented Waukena soil tests were carried out

which demonstrated overall functionality. The cell seals performed

adequately, with no visible loss of solution occurring during the hydro-

lysis. Fluid handling techniques were satisfactory including injection of

the wash H20 up through the filter stack. Inspection of the unit indicated

no evidence of chemical attack after 45 hours of exposure to 6N HC1 at

1050 to 110 0 C. The hydrolysate from one of the above soil tests was

carried through the rest of the processing scheme in laboratory glassware.

The sample was analyzed by gas chromatography and compared to a sample

processed completely in laboratory glassware. The two chromatograms

were generally similar with the amino acid concentrations being somewhat

larger in the sample hydrolyzed in the hydrolyzer than in the sample hydro-

lyzed in glassware. Radiotracers ( 1 4 C labeled amino acids) had also been

added to the soil prior to hydrolysis. The net recovery of the radio-

tracers in the hydrolysate and the wash was 90 percent.

After thorough cleaning, contamination blank was carried out by

injecting 7. 5 milliliters of 6N HC1 into the hydrolyzer and heating for

several hours at 1000C. The solution was collected and a 2. 5 milliliter

portion was evaporated to dryness and derivatized. The derivatization

blank for the batch of 2-butanol/HC1 in use had become excessively large

and precluded observation of trace contaminants below the one nanomole

range. The chromatogram for the hydrolyzer contamination blank did not

show any observable amino acid peaks and only three non-interfering

unidentified contaminant peaks.

The hydrolyzer was then rinsed with redistilled water and loaded

with 1 cubic centimeter of the ARC blank soil. One milliliter of aqueous
-5

bovine pancreatic ribonuclease (2 x 10-5 M) was added to the soil to pro-

vide 20 nanomoles of the standard enzyme. The cell was then closed and

6. 5 milliliters of 6. 9N HC1 was injected to provide a net HC1 concentra-

tion of 6N for the 7. 5 milliliters of solution. Air was removed by pres-

surizing with He/H 2 and then venting several times. The hydrolyzer was

heated to 110 0 C and held at this temperature for 16 hours, after which the

hydrolysate was forced out and collected along with the 5 milliliter H20

rinse for further processing in laboratory glassware.
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Radiotracers consisting of 14C labeled alanine (2 nanomoles), valine

(12 nanomoles) and leucine (4. 5 nanomoles) were added to the hydrolysate

before continuing the processing in laboratory glassware in order to moni-

tor losses in the subsequent steps.

While the hydrolysis was being carried out, a set of controls was

hydrolyzed in laboratory glassware. These controls were: (1) 1 cubic

centimeter of blank soil, 20 nanomoles of ribonuclease, (2) blank soil

without ribonuclease, and (3) 20 nanomoles of ribonuclease without soil.

After hydrolysis, the ribonuclease sample without soil was evaporated to

dryness and derivatized without further processing. The other two

laboratory samples were filtered as usual and then the same radiotracers

as above were added to the combined filtrates and rinsings for the two

laboratory hydrolysates. The three solutions were then evaporated and

carried through the subsequent HF-NaOH and ion exchange processing

steps. Radiotracer results are given in Table 3-1. The recoveries are

good up to the derivatization step, but significant losses occurred during

the derivatization process. Gas chromatograms are shown in Figure 3-19.

Comparison of the chromatograms indicates that the hydrolysis in

the hydrolyzer was equivalent to the hydrolyses in laboratory glassware.

After the hydrolysis was completed, the hydrolyzer was disassembled

for cleaning and inspection. The Teflon filters had inadvertently been left

out. However, very little soil escaped the hydrolyzer because of the small

orifice size in the valve and because of the tendency of the soil to act as a

filter. It is doubtful that the absence of the filters had any deleterious

effects on the experiment. Inspection of the hydrolyzer showed no changes

in appearance.

Further testing with the hydrolyzer indicated that a small leak had

developed in the outlet valve (S-l). This leak may have been a result of

a small amount of soil passing through the valve. Valve rework cured the

problem. The S-1 valve is different from the other valves in that it has a

larger poppet and hence has less sealing pressure. It is recommended

that if this unit is to be used in the future that the unit be reworked to

accept valve simulators with the smaller poppet.
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Table 3-1. Radiotracer Recoveries for Hydrolyzer Test with Ribonuclease ARC Blank Soil Labeled
After Hydrolysis with Alanine, Valine, Leucine, Total cpm 1, 036, 000

Breadboard Processed Lab Processed Lab Processed
Soil + RNase (20 nmole) Soil + RNase Soil, No RNase

cpm* % original cts. cpm* % original cts. cpm*: % original cts.

Combined filtrates 1,001,000 96.6 988,000 95.4 967,000 93.3
after HF/NaOH step

Ion Exchange

Precut 5, 790 0.6 5,360 0. 5 21, 160 2.0

Prime filtrate 1, 052,000 101. 5 1,021, 000 98.6 951,000 91.8

Post cut 1,670 0.2 1,250 0.1 1,240 0.1

Derivative** 601,000 58. 0 515,000 49. 7 514,000 49.6

*cpm corrected for background and for volume sampled

*-After evaporation of TFA/CH 2C 2 and dissolution in CH 2 C1 2



HYDROLYZER TEST

1 CC "BLANK" SOIL PLUS 20 NANAMOLES RIBONUCLEASE HYDROLYZED
IN HYDROLYZER WITH REMAINING PROCESSING CARRIED OUT IN
LAB GLASSWARE. CHROMATOGRAM RUN ON CARBOWAX 20M
COLUMN PROGRAMMED 1000 TO 200 0 C AT 20C/MIN. 1.5% INJECTED.

GLASSWARE

LIEPHE
VALALA- LEU -GLY PRO -
..... -ILEU - - ASP -

- BREADBOARD

VAL-ALA LEU GLY PRO

AS GLU

Figure 3-19. Hydrolyzer Test Chromatogram
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Subsequent work with the hydrolyzer including tests for possible

racemization effects was either in conjunction with other units as a part

of various levels of system tests or as a part of filter material tests.

The results of subsequent testing are discussed in the appropriate sections.

In going from Process No. 1 to Process No. 2 the temperature and

pressure are higher, but the exposure time is much shorter. Also, the

environment is less corrosive. Otherwise, the same basic functions are

required of the processing cell. Thus, the hydrolyzer used for Process

No. 1 is expected to work very well as the extractor for Process No. 2.

3.2. 1.2 Evaporator

Summary: The evaporator was tested with soil-free blanks, with

radiotracer doped standard soil hydrolysate, and with hydrolysates from

soils hydrolysed in the hydrolyzer. After some small modifications in

the unit after initial engineering tests, all functions of the evaporator were

successfully carried out, and the test results were comparable to results

obtained in parallel tests with conventional glassware. Much greater ease

in attaining the desired pH was obtained by substituting NH 4 0H for NaOH

in the desalting step. Good amino acid recovery (94 to 100 percent) using

either NaOH or NH40H in the processing and freedom from racemization

effects were demonstrated. The only continuing problems concerned with

the evaporator were with the filter stack which required a higher pressure

drop than desired to achieve adequate flow, and which gave high back-

ground blanks from the Teflonfilter materialeven after extensive clean-up.

Despite the large number of tests with HC1, HF, and NH40OH, no signifi-

cant corrosion effects were found at the end of the test program after

more than 20 HF-NH40H (or NaOH) processes and more than 25 HC1

evaporations.

Detailed Test Results: Initial testing of the evaporator consisted of

engineering proof, leak and heater tests. Two engineering oriented pro-

cessing tests were carried out on the unit using Waukena soil hydrolysate

(processed in the hydrolyzer) doped with 14C labeled alanine, valine, and

leucine. Several problems were encountered in these tests both from pro-

cedural errors and from deficiencies in the unit itself. Because of the
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unavailability of tantalum capillary tubing, a heated stainless steel

capillary tube was used for the vent restrictor in these tests. This

restrictor plugged during HC1 evaporation, and therefore was removed.

In the absence of the restrictor, difficulties occurred during evaporation

and reagent mixing which resulted in losses into the vent system. This

confirmed that a restrictor was required. During the injection of the HF

and the NaOH solutions, portions of the reagents went into the vent instead

of the cell, apparently because of a flow surge as the last of the reagent

entered the cell head end. The problem was more pronounced with the

NaOH solution probably because of inadequate volume in the cell. Another

deficiency noted was that a portion of the solution escaped the HF/NaOH

processing by being trapped in a small volume between the bottom of the

filter stack and the outlet valve.

Only one of the two tests was carried to completion. In this test,

the pH of the solution pushed out of the bottom of the evaporator after

HF/NaOH processing was 5. An additional 0. 5 milliliter of NaOH solution

was required to reach the desired pH of 9. After pH adjustment, the solu-

tion was reintroduced into the cell and pushed out through the filter again.

The remainder of the processing and derivatization was completed in

glassware. Radiotracer measurements after ion exchange desalting

showed 73 percent recovery for the breadboard hardware processing as

compared to 92 percent recovery for a sample processed entirely in

glassware. This was not surprising in view of the various difficulties

encountered.

In contrast to the radiotracer results, gas chromatographic analysis

of the resulting derivatives indicated larger yields for most of the amino

acids in the breadboard hardware sample. This indicated that the cleaning

procedures used prior to this test were inadequate.

Based on the results of these tests, several modifications were made.

a tantalum disk with 0.010-inch sharp-edged orifice was fabricated for use

as the vent restrictor. This disk was inserted in the bottom of the M. E. R.

fitting receptacle in the evaporator head end. The restrictor was retained

by the standard M. E. R. tube fitting which was inserted into the receptacle.

Since the restrictor was located within the cell head end, it did not require
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a separate heater. An additional 24 milliliters of volume was provided

by adding a cylindrical tantalum section between the cell body and the head

end plate and extending the length of the standpipe. Finally, a tantalum

spacer was fabricated and installed downstream of the filter stack to

reduce the volume between the filter and the outlet valve.

After the modifications were completed, the evaporator and asso-

ciated reagent injectors, valve blocks and interconnecting tubing were

cleaned by repeated soaking and flushing with 6N HC1. Heat was applied

during some of the soak periods. This was followed by repeated rinses

with redistilled water. Then a contamination blank was carried out by

injecting 7. 5 milliliters of 6N HC1 into the evaporator. The HC1 solution

was heated several hours at 100 0 C and then pushed out of the cell through

the filter stack. The solution was evaporated to dryness and the residue

derivatized. Gas chromatographic analysis showed a number of the com-

mon amino acids, typically at about the 20 nanomole level. In comparison,

a similar contamination blank run on the hydrolyzer but without Teflon

filters present did not show similar quantities of contaminants. There-

fore, it was concluded that the Teflon filters were the source of the con-

tamination. Later tests confirmed this conclusion and demonstrated that

these filters continually released contaminants when heated in the pre-

sence of HC1 and were extremely difficult to clean to an adequate level.

After the above test, the evaporator was washed with water and a

processing blank was carried out to test procedures and to obtain further

blank information. 7. 5 milliliters of 6N HC1 and 5 milliliters of H20 were

injected into the evaporator and a nominal evaporation was carried out

with vacuum applied to the evaporator vent. Several different tempera-

tures were used during the course of the evaporation; the final temperature

was 100 0 C. No evidence for bumping was observed during the evaporation

process which required approximately 2 hours. After standing overnight,

10 milliliters H20 was injected and the evaporator heated to 60 C. Mixing

by gas bubbling was carried out by alternately evacuating the cell and then

injecting He/H 2 gas through the center tube. No loss of liquid into the

vent was observed as a part of the gas bubbling. After cooling, 9 milli-

liters of 5N HF was injected and the 5-minute mixing period was carried

out by performing bubbling cycles twice each minute. Next, an equivalent
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amount of 5N NaOH was injected. Some liquid went into the vent line at

the end of this injection. The solution was mixed as before by gas bubbl-

ing cycles for 15 minutes. The solution was then pushed out with gas

pressure, and the pH checked and adjusted. An additional 0. 25 milliliters

of 5N NaOH was required to reach pH 8. 5, indicating that this quantity of

solution was lost or consumed. A yellowish precipitate formed during pH

adjustment. The 10 cubic centimeters wash was injected into the evapora-

tor and collected. Its pH was neutral, and it was slightly cloudy. Upon

standing, a small amount of white precipitate settled out. The filtrate and

the 10 milliliter wash were placed on an ion exchange column by decanting

the solutions away from the precipitates.

Derivatization and gas chromatography were completed in labora-

tory glassware. Amino acids were present, mostly in the 2-nanomole

range, although approximately 12 nanomoles each of glycine, aspartic

acid and glutamic acid were present. This was significantly better than

the previous contamination blank, but still greater than ion exchange

blanks, indicating continued release of contaminants by the Teflon filters.

The evaporator was disassembled and inspected. It did not show

any visible changes. The unit was reassembled with an additional seal

in the filter holder to insure that some of the solution was not bypassing

the filter (a possible cause for the precipitate found in the wash solution).

The evaporator was washed with a series of 6N HCl flushes. During some

of these, "dummy" injections were carried out with the HF and NaOH

injectors. It was observed that in some, but not all instances, some

liquid blew into the vent line as the last portion of the solution rushed into

the cell. Better results were obtained by injecting with the residual head-

space pressure rather than by applying constant pressure to the injector,

but it was not possible to entirely prevent liquid from going into the vent.

After rinsing the evaporator and the HF and NaOH injectors repeatedly

until the washings were neutral, another mixing test was carried out with

9 milliliters of 5N HCI and an equivalent amount of 5N NaOH. The stand-

ard procedure was carried out including injection of 10 milliliters H20

except that some of the times were shortened. Some liquid went into the

vent in both the HC1 and the NaOH injections. After mixing for a while
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by gas bubbling the solution was pushed out through the filter and titrated.

Again, additional NaOH was required, approximately 0. 5 milliliter this

time.

Possible causes of the NaOH discrepancy include loss into the vent

during injection and losses from the more viscous NaOH solution clinging

to the injector walls. Loss into the vent was probably not the cause.

Visual estimates of the quantity of liquid which went into the vent indicated

that less than 0. 1 milliliter was lost in this manner. Since the NaOH

follows the HF into the cell, there is some degree of extra washing of HF

into the cell that does not occur for the NaOH, but it is doubtful that this

could account for the 0. 25 to 0. 5 milliliter difference observed. It was

decided to add an extra 0. 4 milliliter of NaOH to make up for the amount

lost.

Next, a soil hydrolysate processing test was carried out using the

standard Waukena hydrolysate to which 14C labeled alanine, valine and

leucine had been added. The evaporation of the hydrolysate proceeded

smoothly without apparent bumping. After the evaporation was complete,

the traps in the ancillary vacuum system were washed out and the solution

counted. The total radioactivity found in the traps was 0. 2 percent of that

added to the hydrolysate, indicating negligible loss during evaporation.

Processing was continued using the nominal procedure. Because of pre-

vious tests which indicated a NaOH discrepancy of approximately

0. 4 milliter, the amount of NaOH solution loaded into the injector was

increased by 0. 4 milliliter over the amount nominally required. The

HF-NaOH processing was carried out without difficulty (small amounts of

HF and NaOH went into the vent during injection as had occurred in previous

tests).

The filtration step after processing was unusually slow with the flow

rate being only 0. 5 ml/min at 25 psi differential. However, after inject-

ing the wash water and mixing, the wash solution flowed through the filters

very rapidly which indicated that a partial filtration blockage occurred

during filtration of the processed solution. The uppermost filter in the

filter stack was a 50-micron Teflon filter bonded to a perforated Teflon

plate. The filter and plate were intended as a pre-filter and support for

the finer filters. For this experiment, the filter had been loaded with the
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perforated plate upwards. This greatly reduced the effective surface area

of the 50-micron filter and also made the system prone to blockage by the

precipitate filling up the holes in the Teflon plate. It was initially con-

cluded that the reversal of the filter so that the 50-micron filter was up

and the perforated plate was down would still provide adequate support

for the finer filters and would be much less likely to be blocked by the

precipitate. (Later results indicated filter clogging would occur regard-

less of the filter type.)

Following collection of the primary filtrate and the 10-cubic centi-

meter wash, the pH of the filtrate was found to be 9. This confirmed the

need for the additional 0. 4 milliliter of NaOH to achieve the desired pH.

The solutions were then placed on a laboratory ion exchange column and

the processing was completed in laboratory glassware. Simultaneously

two control processing experiments were carried out entirely in lab

glassware. One control was a similar sample of radiotracer labeled

Waukena soil hydrolysate. The other was a laboratory blank without soil

hydrolysate but with HF-NaOH processing. Radiotracer results compar-

ing recoveries of the breadboard processed sample with the lab processed

sample are given in Table 3-2. No significant losses occurred during the

breadboard portion of the processing. Recovery through the ion exchange

step was good for both samples.

Gas chromatography of the derivatives from the lab and the evapo-

rator processed soil samples showed most of the relative areas to be

equivalent. An interfering peak (trifluoroacetamide) at the leucine posi-

tion prevented reproducibility for this amino acid.

At the end of this experiment, the evaporator was inspected and

cleaned. There were no visible signs of attack or degradation.

After discussion of these results, NASA/ARC suggested the use of

NH40H for HF neutralization and pH adjustment. Following laboratory

verification (Section 3.3. 1) a breadboard processing test was carried out

with the HF-NH40H process. The sample was again standard Waukena

soil hydrolysate with added radiotracers. The processing proceeded

nominally except that filtration problems occurred again. This time, the

precipitate was not stopped by the filter stack in the breadboard evaporator.
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Table 3-Z. Comparison of Sodium Hydroxide and Ammonia as Desalting Reagents.
(Recent desalting results measured "combined filtrate" radiotracer recoveries. )

Percent Recovery
Sample HF Neutralized Soil Radiotracer Filtrate after

with HF/OH- Step

BB Soil + RNase Sodium ARC Ala, Val, Leu 96. 6
hydroxide blank

Lab Soil + RNase Sodium ARC Ala, Val, Leu 95. 4
hydroxide blank

Lab Soil Sodium ARC Ala, Val, Leu 93. 3
hydroxide blank

BB processed Sodium Stock Waukena Ala, Val, Leu 100. 4
hydroxide hydrolysate

Lab processed Sodium Stock Waukena Ala, Val, Leu 99. 4
hydroxide hydrolysate

Sample B Ammonia Stock Waukena Ala, Val, Leu 102. 9
hydrolysate

Sample A Ammonia Stock Waukena Pro, Glu, Phe, Lys 92. 8
hydrolysate

BB Processed Ammonia Stock Waukena Pro, Glu, Phe, Lys 94. 1
hydrolysate

Lab processed Ammonia Stock Waukena Pro, Glu, Phe, Lys 94. 9
hydrolysate



The sample and the 10-milliliter wash were filtered through our standard

lab filtration set-up to get rid of the precipitate and the processing was

completed normally in laboratory glassware along with laboratory glass-

ware controls. Radiotracer results are given in Table 3-2.

Equivalent 94 percent total recoveries were obtained in the lab and

on the breadboard. At least half of the missing counts were accounted for

in handling errors. The gas chromatographic results for the evaporator

processed sample versus the lab processed sample were equivalent.

A comparison of sodium hydroxide versus ammonia processing in

both the lab and in the breadboard is given by the summary Table 3-2.

The alanine, valine, leucine radiotracer mixture seems to give slightly

higher recoveries than the other labeled amino acid mixture. However,

most losses seem to be accountable as handling errors. The overall

conclusion was that the use of NH40H did not show any deficiencies and

had shown a number of advantages. All further processing used NH40H

in place of NaOH.

The evaporator was disassembled to see if the cause of the filtration

failure could be determined. It was found that the filter stack in use

(coarse Teflon bonded to backup, 10-micron Teflon, 5-micron Teflon,

5-micron Teflon, coarse Teflon bonded to backup) was not adequately

compressed to get good sealing against the flanges. Therefore, the

filtration failure probably occurred because the solution was able to go

around rather than through the filter stack.

Because of the failure of the filters to stop the precipitate in the

above test, additional tests were carried out to cure this problem. The

initial attempt was to add additional filters to the filter stack with the idea

being that the increased compression would ensure that the stack was

sealed into the filter retainer. This was initially successful, but it was

found that after heating the assembled evaporator for several hours there

was sufficient thermal relaxation in the filters so that the filter stack was

no longer compressed after the heating. Therefore, an O-ring (initially

Viton, later changed to Teflon) was placed at the bottom of the filter stack,

and the unit reassembled. Flow tests indicated that the filters were

properly sealed.
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Another processing test was then carried out in the evaporator for

the purpose of testing the filtration, and also for the purpose of providing

a sample solution for a test of the breadboard ion exchange column. The

evaporator processing was carried out by the nominal procedure using

a portion of the standard Waukena soil hydrolysate. NH40H was used

to neutralize the HF. The filtration after the HF-NH4 OH was carried

out successfully although the flow rate through the filter stack was slow

due to the large number of filters in the filter stack. The evaporator

wash and filtration step was also carried out successfully. Therefore,

it was concluded that an O-ring would provide adequate filter stack

sealing.

Further testing of the evaporator was carried out as a part of the

systems level tests.

The basic conclusion from the component level evaporator testing

was that except for a higher pressure drop during filtration and release

of contaminants by the Teflon filters, the unit functioned well and gave

excellent results.

Most of these problems are effectively eliminated with the new

baseline process because there is no precipitation step and hence no

precipitate to clog. A filter may not be needed at all, and if one is

needed, it should be possible to change filter materials or to change the

design so that interference material from Teflon filters will not be a

problem. Further comparison of Process No. 1 and Process No. 2

indicates that the conditions in Process No. 2 are milder than in

Process No. 1, and that all of the functions required for Process No. 2

have already been demonstrated for the evaporator (which becomes the

hydrolyzer/evaporator in Process No. 2).

3.2. 1. 3 Ion Exchange Column

Summary: The breadboard ion exchange column (IEC) was tested

with NH40H blank elutions, with HF-NH40H processing blanks, and

with soil samples processed through the HF-NH40H step in either

laboratory glassware or in the breadboard. In general, the prototype

IEC worked well. Good recovery (90 to 96 percent) of amino acids was

demonstrated with samples containing 14C labeled amino acids. Flow
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rate variations did occur because of resin volume changes with different

reagents, but proper flow control could be achieved via an external flow

restrictor. The teflon coated stainless steel spring performed satis-

factorily in maintaining bed packing with upward flow through the column.

The only significant problem with the IEC was that the resin itself was a

source of interfering material. The interference from the resin was

reduced by elution and regeneration of the IEC immediately before use.

The breadboard IEC contained 30 milliliters of resin which is the amount

required for Process No. 1. The new baseline process requires only

5 milliliters of resin. Thus, the flight IEC would be expected to produce

significantly less interference.

Detailed Test Results: After proof and leak checks, the breadboard

ion exchange column was loaded with ion exchange resin from one of the

laboratory columns then in use. At the time of loading, the resin was

in the H+ form and was loaded in a 4N HC1 slurry since the resin

occupies minimum volume in the HC1 solution. Sufficient resin was

added to just slightly compress the Teflon-covered spring after the 30- to

60-micron Teflon sliding filter (bed support) was installed. Before

installing the inlet valve block, the volume of the bed was observed as

water was washed through it via suction on the outlet. As the resin went

from the acid to the neutral environment, the filter was pushed down the

tube as the resin expanded. After the column effluent was neutral and

had expanded to its greatest extent, the spring compression was checked.

(It was found that the spring was not fully compressed and, therefore,

there was adequate spring travel.) The rest of the assembly was com-

pleted, and the column was mounted on the breadboard. The first test

carried out was to monitor the column flow rate as the column was

eluted with NH 4 OH, washed with water, and regenerated with HC1.

Initially, 40 psi was required to obtain significant flow, but after a short

period of time, the flow increased. Some irregularities in flow also

occurred when flow was stopped and then restarted. These effects were

apparently a result of air trapped in the 0. 1-inch-thick Teflon filters

used as bed supports. After several cycles of HC1, H 2 0, NH40OH, H 2 0,

all of the trapped air escaped and the flow behavior was reproducible.

The flow did vary depending on the reagent in the column because of bed

expansion and contraction.
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To better define the flow variations, an HF/NH4 OH blank was run

through the IEC while monitoring pressure and flow rate as the various

reagents passed through the column. The pressures required to main-

tain a flow rate of 0. 5 ml/min varied from 6. 5 to 3. 5 psi from the initial

NH4F solution through the ammonia elution. This is not an excessive

pressure variation, and the flow could be controlled reasonably well with

the addition of an external flow restrictor. For a time, a 1. 5-micron

Teflon filter held in a M. E. R. union was used as a restrictor; but for

most testing, a restrictor was not used and the pressure applied was

adjusted to maintain the proper flow rate.

The collected filtrate from an evaporator test was labeled with

14C proline, glutamic acid, phenylalanine and lysine. After adding

phenolphthalein, the filtrate was placed in the breadboard ammonia

reservoir and was pushed onto the ion exchange column. This was

followed by the evaporator wash, 30 milliliters of H O and 4N NH4 OH.

During the NH4OH elution the pressure was adjusted to maintain the

flow at 0.5 ml/min. The pressure required varied from 3.8 to 6.6 psi.

Results of the radiotracer measurements are shown in Table 3-3.

The overall results were quite good, with all the radioactivity being

accounted for within experimental error. The volume in the column exit

tube was small (<100 [1I) so that prime eluent (7 ml) included virtually

no solution prior to the appearance of the phenolphthalein color. This

accounts for the fact that the precut contained 3. 5 percent of the radio-

activity, since a small quantity of the amino acids usually immediately

precedes the appearance of the indicator color. Therefore, a short

length of 1/8-inch OD teflon tubing was added to the outlet tube to

increase the volume in the line and hence to retain more solution pre-

ceding the appearance of the phenolphthalein color.

Some losses occurred during subsequent laboratory processing of

the prime eluent (evaporation and derivatization). The evaporation loss

represents bumping problems on the rotary evaporator. Radiotracer

measurements made during laboratory derivatization are also shown in

Table 3-3.
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Table 3-3. Breadboard Ion Exchange Column Radiotracer
Recovery, Initial Activity - 928, 500 cpm

Ion Exchange cpm: Percent Recovery

Precut 32,640 3.5

Prime Eluent 895, 240 96. 4

Post Cut 2,270 0. 2

Column Wash (NH40OH + H 2 0) 14, 910 1.6

Ammonia Reservoir 0 0

Total Accounted for 945, 060 101.8

Derivatization

Losses in Evaporation 72, 560 7. 9

Recovery after HC1/BuOH Step 784, 900 87. 7

Final Derivative 613, 900 78. 2

cpm corrected for background and volume sampled

The gas chromatogram resulting from the derivatized product was

very similar to those of derivatives resulting from other tests such as

those from the previous evaporator test, except that the trifluoro-

acetamide interference peak was much larger for the breadboard ion

exchange column sample than for samples processed in the lab columns.

The larger interference peak with the breadboard column was felt to be

caused by the fact that the breadboard column had less use than the lab

columns, (the trifluoroacetamide peak decreases with frequent column

use).

Next, the column was cycled (NH40H-H 2 0-HC1-H 2 0) several

times for cleaning purposes. During one of these cycles, gas was

inadvertently passed into the column. The column was back-flushed for

a while and then forward flow was resumed. Approximately 4 hours of

flow were required before the flow rate returned to its initial value.
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The ion exchange column (IEC) was then repacked by removing the

spring-loaded end and stirring the resin bed until all of the resin was in

suspension. The bed was then allowed to settle, and the IEC was

reassembled, washed, and regenerated. A NH40H blank elution was

carried out to monitor the condition of the IEC with respect to interfering

material in the 7 milliliters of NH4OH eluent. This test was also

partially in response to a question from NASA/ARC as to how much

reduction in resin volume would be required to reduce to an acceptable

level the amount of interfering material coming out of the resin. The

7 milliliters NH40OH sample (containing phenolphthalein) from the IEC

elution was evaporated and derivatized by the usual laboratory method

and the derivative was chromatographed on both Carbowax 20M and

Dexsil 400 columns. Figures 3-20 and 3-21 show the chromatograms

obtained from each column. Underneath the IEC sample chromatograms

are shown reference chromatograms of a standard derivative mixture.

The standard represents 2. 5 nanomoles of each amino acid (based on the

amount of amino acid originally derivatized and the fraction of the

derivative injected), while the IEC sample chromatograms are from

injections of 25 percent of the sample.

On Carbowax 20M, the large interfering peak which occurs at the

leucine position (and is ascribed to trifluoroacetamide) is very prominent.

This peak is equivalent in size to an amino acid derivative peak of

approximately 100 nanomoles. Most of the other peaks in the region of

interest (valine through glutamic acid) are identifiable as being from

trace amino acid contamination and represent (except for alanine) less

than 5 nanomoles each in the total sample. There are only a few non-

identified peaks in the region of interest and they represent less than

5 nanomoles in each case. Other major unknown peaks do occur in the

chromatogram, but their retention times are longer than those of the

amino acids of interest and hence are non-interfering.

In the case of the Dexsil 400 chromatogram, virtually all of the

peaks seen in the region of interest are identifiable as resulting from

trace amino acid contamination, and no major interfering peaks occur

until shortly after the retention time of the lysine derivative.
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100x

1 0x 10x

Ammonia Blank of Ion Exchange
Resin on Carbowax 20M GC Column. Upper:

Gas Chromatogram of 25% of the sample re-
sulting from derivatization of the product
of a NH OH blank elution of the Breadboard
IEC. Lower: Reference chromatogram of
2.5 nanomole each standard N-TFA, D,L-2-

L__butyl amino acid derivatives. Carbowax
20M column, 200 ft x 0.030 in. id. Pro-

10x 20x grammed at 2*C/min from 100 to 170 *C
after initial heating from room temperature.-3 m) 
Varian 1860 Gas Chromatograph Electrometer

time setting 1 x 10-11 amp.

Figure 3-20. Ammonia Blank of Ion Exchange Resin on
Carbowax 20M GC Column



Time 3 min

Ammonia Blank of Ion Exchange
Resin on Dexsil 400 GC Column. Upper:
Gas Chromatogram of 25% of the sample re-
sulting from derivatization of the product
of a NH OH blank elution of the Breadboard
IEC. Lower: Reference .chromatogram of
2.5 nanomole each standard N-TFA, D,L-2-
butyl amino acid derivatives. Dexsil 400
column, 200 ft x 0.030 in. id. Programmed
at 2 *C/min from 100 to 200 *C after initial
heating from room temperature. Varian
1527 Gas Chromatograph, Electrometer range 4x
1. 4x

Figure 3-21. Ammonia Blank of Ion Exchange Resin on
Dexsil 400 GC Column



On the basis of gas chromatographic results, it appears that the

primary interference from the ion exchange resin is trifluoroactamide.

Stringent cleaning should reduce the amount of amino acid contamination,

and a reduction of the resin volume to the'5 milliliters in the new base-

line process should reduce the amount of other interfering material to

the acceptable level in the region of interest. Elution and regeneration

of the column immediately before use appears to be necessary to mini-

mize the amount of interfering material produced. The results of the

IEC testing were encouraging, and in fact, even with the full 30 milli-

liters of resin, large portions of the chromatograms approach the level

of derivatization blanks except for the amino acids and the trifluoro-

acetamide. Also, no corrosion of any of the IEC components was

observed including the Teflon-coated stainless steel spring.

The remainder of the IEC testing was carried out as a part of

systems level testing.

There are two significant differences between Process No. 1 and

No. 2 for the ion exchange column. The reduction in resin volume to

5 milliliters in the baseline process should not only reduce the amount

of interfering material produced by the resin but also should reduce the

amount of trace contamination of amino acids because the volumes of the

various reagents, especially water, used with the ion exchange column

are decreased. The other significant difference is that the salts passing

into the column in Process No. 2 should not have a significant quantity

of fluoride present. Thus, no HF would be produced in the column via

the ion exchange process. Thus, the conditions to which the column

materials and the resin are exposed to will be significantly milder with

Process No. 2.

While a new ion exchange column will have to be fabricated to

test Process No. 2 with the breadboard, the overall operation will be

the same as before, so good results can be anticipated with a new

5-milliliter ion exchange column.

Liquid Level Sensor

The recovery of amino acids and the efficiency of the desalting is

degraded somewhat if gas is inadvertently passed through the ion
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exchange column. Since it was difficult to predict the flow rate of

solutions out of the evaporator into the IEC in Process No. 1, the design

included a liquid level sensor to determine when all of the filtrate from

the HF/NH40H processing and the evaporator wash were pushed into the

IEC. The breadboard sensor operated by measuring the conductivity of

the solution passing through it. It was constructed from a Teflon union

threaded to accept M. E. R. type fittings. The electrodes were two gold

wires press-fitted into the Teflon. When gas is present in the line, the

conductivity decreases to a very small value.

The operation of the sensor was tested with both DC and AC

resistance measurements. In the DC mode using a standard ohmmeter,

reliable indications were obtained as to the presence or absence of liquid

in the sensor. Because of electrode polarization effects, the actual

resistance values obtained with various solutions had little significance.

Typical DC resistance values were from 0. 1 to 50 megohms depending

of the type of solution and the length of time the DC voltage was applied.

While the device worked reliably at first in this mode and was simple to

operate, it was felt that the use of DC is undesirable because of the

formation of electrolysis products from the solution or the electrodes

and because of the possibility of electrode fouling.

AC measurements overcome most of these problems since there is

no steady-state current. However, typical laboratory instrumentation

for the measurement of AC impedance or resistance does not allow for

convenient operation of the sensor. The sensor had a cell constant of

approximately 10 so the resistances occurring with most solutions

exceeded the range of devices which have simple meter readouts. AC

bridges worked satisfactorily (except with pure water because of the

high resistance) but were inconvenient because of the need to balance

both resistance and capacitance. Use of total impedance rather than

AC resistance should be adequate and should permit simpler instrumen-

tation. The sensing of capacitance would be another alternative.

After the sensor had been in use for a while it developed an internal

conductive path which made its indication unreliable, so it was not used

further. Visual observation of the Teflon line between the evaporator
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and the IEC was used in its place. For further work, it is recommended

that the sensor be redesigned with a smaller cell constant and larger

electrode area.

Flow rates into the ion exchange column should be much more

predictable with Process No. 2. Hence, if a reduction in recovery is

acceptable (because of allowing for some margin of error by not planning

to collect all of the sample), then the liquid level sensor may be dispen-

sed with entirely. Further testing is required, however, before such a

decision can be made, and it is recommended that this be evaluated in

the next breadboard phase.

3.2. 1.4 Derivatizer

Summary. The derivatizer was tested for basic function, for its

ability to transfer standard derivatives onto GC columns, and for deriva-

tization of pure amino acids and samples derived from soil processing.

Interference peaks caused by elastomeric materials occurred and, as a

result of further testing, the derivatizer seals were replaced with various

types until all materials present were tantalum and Teflon. This was

accomplished by fabricating new hand-operated, all tantalum diaphragm

valve simulators. At this point, most of the derivatizations with pure

amino acids and optically inactive 2-butanol showed one remaining inter-

ference peak. However, the final derivatization which was with optically

active 2-Butanol, in addition to showing that no racemization effects

occurred, also did not produce any significant interference peaks. Der-

ivatization of samples derived from soil processing continued to produce

large interference and further work is needed in this area. However, it

is felt that a solution to this problem is available. The change from

Processing Sequence No. 1 to the new baseline process should also result

in reduced interference.

Detailed Test Results. Preliminary proof and leak tests indicated

that some modifications were needed in the vent line and vent restrictor.

The initial restrictor was a Teflon orifice in a Teflon Swagelok fitting,

and it tended to leak with thermal cycling. The Teflon orifice was

replaced with a tantalum orifice press fitted into the end of the tantalum
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vent tube coming out of the derivatizer head end. In order to have more

reliable temperature control, the meter relay type temperature control-

lers were replaced with a better type of thermocouple controller which

incorporated thermocouple break protection. Heater tests were carried

out which demonstrated that the proper temperatures could be obtained.

Cooling tests were carried out to develop a convenient method of cooling

the derivatizer to 00 C or below. An insulated box was constructed to

surround most of the derivatizer: by placing crushed dry ice into the

box, but not in direct contact with the unit, it was possible to reduce the

derivatizer temperature below -5 0 C. The unit could be controlled at

this temperature with the temperature controllers. The magnitude of

the thermal gradients was not determined.

Evaporation tests carried out with a 4N NH40H solution containing

phenolphthalein proceeded smoothly with no apparent bumping. There

was no evidence of phenolphthalein color in the condensate found in the

vacuum system trap. Thus, it appeared that the NH4 OH and butanol/HC1

reagents could be successfully evaporated. Later tests also confirmed

this although bumping did occur in a few instances when the vent valve

was opened when the solution in the cell was at too high a temperature

(>700C for H 2 0).

Tests were then set up to monitor TFA/CH 2 CL 2 evaporation. The

evaporation of NH40H and butanol/HC1 can be monitored by the presence

of condensate in the unheated portions of the vacuum system. This con-

densation does not occur with CH2C12 and hence some tests were carried

out with a pressure transducer added to the derivatizer so that evapora-

tion times could be determined as a function of reagent quantity and of

cell temperature. These evaporation tests were carried out separately

since it was undesirable for the transducer to be present during an actual

derivatization because of materials problems. These tests were based

on the fact that, as long as there is reagent in the cell, the pressure

was significantly above zero because of the flow restrictor in the vent

line. The times required for evaporation of TFA and methylene chloride,

individually, and as a mixture from the derivatizer at -5 0 C, were deter-

mined with the transducer connected to the S-8 outlet line. The lower

portion of the cell was surrounded by dry ice (but not in direct contact
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with it), and the heater (H3B) controller was set at -5 0 C. The cell was

evacuated and the vent closed. Next, 0. 4 milliliter total quantities of

CHZC12 , TFA, or a mixture of the two, were introduced through valve

S-9 via a syringe attached to the inlet line. After a short waiting period

to allow the reagent to cool, the cell was opened simultaneously to vacuum

and to the pressure transducer. The output of the transducer was recor-

ded at 15- to 60-second intervals. Figure 3-22 illustrates the transducer

output as a function of time in four such tests, two of them being replicate

experiments with a mixture of TFA and methylene chloride. It was con-

cluded from these tests that 10 to 12 minutes was a sufficient length of

time for the reagents to evaporate at -50C. (In later tests, the evapora-

tion time for TFA/CH2C12 was increased to 30 minutes to insure complete

evaporation of any last traces of TFA.)

Tests were carried out to demonstrate that methylene chloride

could be evaporated off without significant losses of amino acid deriva-

tives, and that the derivatives could be evaporated out of the derivatizer

and into a GC column. Four microliters of a standard amino acid deriv-

ative solution (= 2 nanomoles each) were injected with a syringe through

a chilled inlet line into the evacuated, chilled cell followed by a total of

0.4 microliters CH2C12. The cell was opened to vacuum for 10 minutes

at -5 0 C in order to evaporate the CH 2 C12. A lab Carbowax 20M column

was attached to the S-8 outlet, and the gas was allowed to flow through

the cell and the column at a rate of about 15 cc/min. The cell and S-8

outlet were slowly heated to and then held at 150 0 C for about 5 minutes.

The column was then removed from the breadboard and reconnected to

the gas chromatograph for data collection.

Two such tests were performed initially. The first chromatogram

showed a broad interference peak during the elution of valine through pro-

line which was not present in the second run. This interference may have

been from residual matter in the cell since only limited heating of the cell

had been carried out prior to this test. The chromatogram from the sec-

ond test was, in general, good although the glutamic acid peaks were

either missing or smeared out. (Later tests with standard derivatives

carried out to monitor the derivatization condition generally were free

of interferences and all expected peaks were present and well shaped.)
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4z' EVAPORATION OF METHYLENE CHLORIDE AND
' TRIFLUOROACETIC ANHYDRIDE FROM BREAD-

. BOARD DERIVATIZER AT -5 *C.

1. e ) 0 VOLTS 0 0 PRESSURE
ZERO PRESSURE POINT VARIABLE
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TIME (MINUTES)

Figure 3-22. Evaporation of Methylene Chloride and Trifluoroacetic Anhydride
from Breadboard Derivatizer at -5 0 C.



Since the derivatizer appeared to be capable of performing the basic

processes required, two complete derivatizations were carried out on

three amino acids in the derivatizer followed by evaporation of the prod-

ucts into a laboratory GC column and subsequent gas chromatographic

analysis. The complete process included injection of 1 milliliter of an

aqueous solution of 2 nanomoles each of valine and phenylalanine and 10

nanomoles of proline followed by injection of 6 milliliters of 4 N NH40H

to provide the proper solution conditions. The 7 milliliters of aqueous

NH 4 0H solution were evaporated in the nominal mode by heating the vent

(H3C) to 1200C, opening S-6 and then slowly heating the cell (H3A, H3B)

to 100 0 C. (H3A, H3B, H3C are heater designations in Figure 3-1.) The

evaporation required 40 to 60 minutes for completion as evidenced by no

visible vapor in the vacuum vent lines. The heaters were turned off, and

when the cell had cooled to about 500C, 2 milliliters of 2-butanol/HC1

were injected. Next, the lower cell was gradually heated to 100 0 C with

the cell closed. The upper cell temperature was set (H3A) about 50C less

than that of the lower cell to encourage refluxing. Three hours later, the

heaters were turned down and the cell allowed to cool to below 700C before

being opened to the vacuum for the evaporation step. The evaporation of

the 2-butanol/HC1 required from 15 to 35 minutes before appearing

complete.

During this process, the cell was heated at 700C and the vent line

was heated to 110 0 C. After the evaporation was completed and the deriv-

atizer had cooled to room temperature, 0.2 milliliter CH2C12 and 0.2

milliliter TFA were injected into the cell, and the acylation step was

allowed to proceed for 1 hour. The cell was then cooled (lower cell temp-

erature, H3B = -5 0 C) and opened to the vacuum for 10 to 12 minutes in

order to allow the TFA/CH 2 C12 to evaporate. The derivatives were trans-

ferred to a GC column by slowly heating the derivatizer to 1500C with

15 cc/min He/HZ flow through the derivatizer into the column. Finally,

the column was transferred to the Varian 1800 GC and a standard GC

program carried out. The resulting chromatogram showed an extremely

large amount of interference (approximately one thousand times the size

of a 2-nanomole amino acid derivative peak) throughout the chromatogram.

At the conclusion of this test, the derivatizer was disassembled for ins-

pection and cleaning. The inside of the cell was covered with a grey dusty
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residue which was easily wiped out. In addition, the cell walls were

somewhat streaked and spotted. These spots remained even after exten-

sive soakings and washings with various reagents, and may have been

present before the derivatization was carried out.

After the derivatizer was cleaned, dried, and reassembled, it was

baked out under vacuum for 30 minutes at 1500C to insure that any vola-

tile impurities were removed. The derivatization was then repeated, but

the chromatographic results were similar to the first derivatization.

Although the interfering material was an order of magnitude lower than

the first test, it was still 4 orders of magnitude larger than can be

accepted.

After running the chromatogram at the conclusion of the first deri-

vatization test, it was found that the column (Carbowax 20 M) no longer

functioned properly. At the time no special note was taken of this fact

since this particular column was near the end of its life, having been

used for a considerable period of time. However, after the second deri-

vatization test, the column used (Dexsil 400) was again damaged. There-

fore, it was concluded that the material coming out of the derivatizer

either by partially remaining in the column or by reacting with the liquid

phase had altered the column. Since previous results have demonstrated

that TFA can be passed through the column, it was concluded that the

interfering material had been formed during the derivatization from some-

thing in the derivatizer and the peaks seen were not a result of unevapor-

ated TFA.

The primary suspects as a source of interfering material formed

during derivatization were the elastomeric seals used in the valve simu-

lators. These valves had two external seals, which in the case of the

two derivatization tests were of Viton E-60, which is the material used in

the VLBI solenoid valves. It was hoped that even if there were some

materials problems with the Viton, the metal-to-metal contact surfaces

between the cell contents and the seals would prevent any serious reac-

tions. Apparently this was not the case. Therefore the static body seal

was replaced with a Creavey type seal (Teflon encased metal spring).
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Initially, it was thought a Creavey type could not be used here because

sufficient force to effect the seal might distort the tantalum body. How-

ever, further study indicated that the valve could withstand the force

required.

Because replacement of the dynamic shaft seal with a non-

elastomeric type was very difficult, a brief materials test was carried

out to see if ethylene propylene rubber (EPR) would be a more suitable

material. Portions of Viton and EPR O-rings were put in derivatization

vials and derivatizations carried out. The O-ring materials were

removed, the derivatization products were dissolved in CH 2 CL 2 , and

small portions were chromatographed. A 0. 5 percent injection of the

sample from the derivatization in the presence of Viton resulted in a

number of relatively large peaks, while in the case of EPR, a 0. 5 per-

cent injection was relatively clean. However, significant peaks were

observed from the EPR sample when 25 percent of the sample was injec-

ted. Thus EPR was a superior material, but it was not certain that it

could be successfully used for the shaft seal. All four valve simulators

were, therefore, removed from the derivatizer and disassembled. The

Viton O-ring shaft seals were replaced with ethylene-propylene rubber

O-rings. The Viton O-ring external seals were replaced with Creavey

seals.

The derivatizer itself was cleaned, reassembed, and baked out. A

standard mixture of amino acid derivatives (2. 5 nanomole each of Ala,

Val, Leu, Gly, p-Ala, Pro, Phe, Glu) dissolved in 0.4 milliliters of

CH C1 was introduced through S-9, and the methylene chloride was evap-

orated off at -5 0 C through the vent (S-6). (See Figure 3-1 for the deriv-

atizer flow schematic and valve notation.) A Carbowax 20M GC column

was connected to the GC port (S-8), and a gas line was connected to S-9

port. Gas was then swept into S-9 through the derivatizer and out S-8

and then into the column. Atfer flow was started (15 cc/min), the deriv-

atizer was slowly heated to 150 0 C to evaporate the derivatives onto the

column. Subsequent gas chromatographic analysis gave good results with

all the amino acid derivative peaks being present at the expected level

including glutamic acid (which had not been observed in earlier tests with

standard derivatives). There were several other unidentified peaks
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present in the chromatogram at levels similar to the amino acid

derivatives which may have been the last traces of the interfering mat-

erial produced in previous tests, or it may have been some material out-

gassing from theS-8 and S-9 valve shaft seals.

After baking the derivatizer under vacuum, another full derivatiza-

tion test was carried out. Twenty-five nanomoles each of Val, Pro, Phe

and Glu were introduced through S-9 in I milliliter of H20. The

H20 was evaporated off, and the S-9 inlet line dried. Two millileters of

2-butanol/HC1 was then injected through S-9 using the breadboard

2-butanol/HC1 reservoir. After heating at 100 0 C for 3 hours, the reagent

was evaporated with the heater controllers set at 700C. The S-9 inlet

line was dried, and atfer the derivatizer had cooled to 30 0 C, 0. 4 milli-

liter of TFA/CHzCI 2 was injected through S-9 using the TFA/CH 2 C12

reservoir. After 1 hour, the unit was cooled to -50C, and the TFA/

CHzC12 was evaporated for 30 minutes. The S-9 line was briefly heated,

and then the product of the derivatization process was evaporated onto a

Carbowax 20M column attached to GC column port (S-8) with He being

swept through the unit entering via S-9. The subsequent chromatogram

was much better than those from the previous two derivatization tests,

although there was interference through much of the chromatogram. No

amino acid derivative peaks were identified. The Val and Pro derivatives

could not have been detected because of the interferences. However, the

baseline was sufficiently stable in the time period where the Phe and Glu

derivative peaks would be expected for the peaks to be detected if present.

It was hypothesized that the large amount of material in the column

resulted in a change in the retention characteristics in the column so that

the Phe and Glu peaks were not eluted at the expected time.

The GC column was purged for several hours at 2000C and then

tested with standard derivatives. Unlike the first two derivatization

tests, the column was found to be functioning normally which again indi-

cated significant reduction in the amount of interfering material produced.

While the changes made thus far had improved the result, it was

obvious that major problems remained. Further consideration of the

derivatizer operation led to the conclusion that use of the same inlet line

and hence the same valve for both reagents and for the helium might be
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contributing to the problem since the valve shaft seal was exposed to a

degree to the reagents and then was exposed while the cell was heated to

evaporate the derivatives into the GC column. By bringing the helium

into the derivatizer through S-7 as was designed for full breadboard oper-

ation, S-9 would be closed during the evaporation onto the column step and

hence any reaction products between the O-ring and the reagents which

were adsorbed onto the O-ring would not be volatilized and swept into the

column. The helium line going to S-7 had not been used in the past

because it was connected with the line going to SC-2 (to provide He for

the hydrolyzer and evaporator), and occasionally aqueous solutions got

into the line. Therefore, the gas lines were rerouted to prevent this.

Prior to the changes, the He lines going to SC-2 and to S-7 were con-

nected after LV-14. In the new routing, LV-14 was used as a three-way

valve with separate lines to SC-2 and S-7 to prevent any water from

getting into the derivatizer via the He lines.

The overall post-test appearance of the derivatizer was good.

However, the Creavey seal between the cell body and the head-end was

found to have failed. The Teflon had taken a set and had cracked. Upon

close examination, corrosion of the inner stainless steelspring was

observed. Previous tests with unstressed Creavey seals had indicated

that they were reasonably compatible with the derivatization process. A

test was carried out with a stressed Creavey seal. This seal also dev-

eloped a set and cracked during the derivatization, leading to the conclus-

ion that a replacement seal for the Creavey seals in the derivatizer was

required.

After a new Creavey seal was installed for the cell seal, the unit

was baked out and another standard derivative evaporation test was

carried out to check out the new flow routing and to check for any inter-

fering material. 2. 5 nanomoles each of the eight standard amino acid

derivatives used in the previous evaporation test were introduced and the

test carried out in a similar manner except for the use of S-7 as the He

inlet. The chromatogram after evaporation of the derivatives on the

Carbowax 20M column was similar to that from the previous standard

amino acid derivative evaporation test. All the amino acid derivative

peaks were observed and there were several interfering peaks present
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at levels similar to the amino acid derivative peaks. Thus it appears

that a small amount of interfering material was produced even in a simple

evaporation test. This material is thought to come from the seals either

by simple outgassing or because of action of methylene chloride on the

seals.

After a vacuum bakeout, a full derivatization procedure was again

carried out. The procedure was identical to the previous full derivatiza-

tion test except for the use of S-7 rather than S-9 for the He inlet. The

gas chromatographic results were much better than the previous test.

The amount of interfering material while still present in large quantity

was greatly reduced and, for the first time, the peaks corresponding to

the derivatives of the four original amono acids (25 nanomoles each of

Val, Pro, Phe and Glu) were identified in the chromatogram. This was

a significant result because it meant that the breadboard derivatizer

would be functional once the large amount of interfering material pro-

duced was eliminated. The remaining interferences were similar in

size to the 25 nanomole amino acid derivative peaks so a significant

reduction in the interfering material was still required.

It was felt that most of the problem still resulted from the bread-

board seals and hence would not occur or could be avoided in a flight type

unit. The need for frequent disassembly and cleaning on the breadboard

caused the selection of the type of seals then in use, but further work on

improved seals was needed.

Effort was then directed at finding replacement seals for the valve

simulator shaft seals and for the main cell body seal. It was desirable,

however, to determine what part of the derivatization process was causing

the remaining interference in order to attack the problem in an effective

manner. This was accomplished by breaking down the various steps and

carrying them out partially in the derivatizer and partially in lab glass-

ware. To determine if some of the interference was being washed in with

the reagents through the injection lines, the reagents were injected into

the derivatizer head end with the bottom removed so that they could be

collected in a standard lab derivatization vial and a normal lab derivati-

zation carried out.
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The test was carried out by injecting 2 milliliters of 2-butanol/HC1,

collecting in the derivatization vial and heating the reagents for 3 hours at

1000 followed by evaporating to dryness in the vial using the normal lab

procedure. In the meantime the derivatizer head end and associated lines

were dried by heating and gas flow. The vial was taken back to the deri-

vatizer and 0.4 milliliter of TFA/CHzC1 was injected through the deri-

vatizer head end. The derivatization was continued in the normal lab

manner and the resulting derivative was analyzed by gas chromatography.

The chromatogram did show some interfering peaks, but it, in general,

was not significantly different from a regular lab derivatization blank

which was carried out at the same time. Therefore, it appeared that

heating of the reagents in the derivatizer was required to form the large

amount of interfering material found in derivatizer derivatizations. The

shaft seal on the vent valve (S-6) was especially suspect since it is

exposed to hot 2-butanol/HC1 during the 2-butanol/HC1 evaporation step;

and since this seal is upstream of the flow restrictor, it would be easy

for material formed from attack by 2-butanol/HC1 to get back into the cell.

Following the head end test, the entire derivatizer was cleaned and

returned to the engineering laboratory for work to develop new non-

elastomeric seals. Since the Creavey seal used as the main cell body

seal had not held up well, a special tantalum metal seal was constructed.

This seal in conjunction with Teflon gaskets (to prevent galling) appeared

to seal satisfactorily. As an expedient, split Teflon o-rings were instal-

led in place of the elastomeric O-rings on the valve shafts. Initial leak

tests indicated that they might seal adequately so the derivatizer was

reassembled using split Teflon O-rings as the shaft seals; the tantalum

seal was used at the cell body seal; and Creavey seals were used for the

valve external seals. After further leak tests in the engineering labora-

tory, the unit was brought back for further derivatizer testing. The unit

was baked out for a short period and cooled. A standard derivative mix-

ture in CHZC12 was introduced into the cell and the CHZC12 was evapora-

ted off at -50 C . The sample was then evaporated onto a Carbowax 20M

GC column. Seal performance during this test was marginal. The S-6

shaft seal leaked badly when the unit was chilled. Either or both the

S-7 and S-8 shaft seals leaked moderately at room temperature. The

seals did appear to seal adequately at elevated temperatures. The
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resulting chromatogram showed a large, very broad interference peak,

but no identifiable amino acid peaks. The derivatizer was cleaned as a

total unit and the cell was baked out and the derivative mixture test was

repeated. The results were similar to the first test. The broad inter-

ference peak was somewhat smaller, but there were still no amino acid

derivative peaks. Since earlier derivatizer testing with derivative mix-

tures was successful, it appeared that the changes made on the seals had

caused some sort of problem.

A third trial at derivative evaporation led to a repeat of prior

results - a major broad peak about half the size of the previous run but

with small (about 1 percent full scale) humps occurring at locations

appropriate for amino acids.

Because the last run gave some indication that amino acids were

coming out of the derivatizer but that most were being destroyed, another

run was made to test the hypothesis that water was getting into the cell

and destroying the amino acids. Valve leaks were observed in the above

tests, especially in cooling. For this test 10 nanomoles each of the

standard a. a. derivatives was injected into the derivatizer followed by a 200

microliter methylene chloride wash. Without cooling or evaporating the

solvent, the sample was evaporated into the GC column. This test too

resulted in no amino acid peaks. The cell was dismantled and badly

corroded valves were discovered. Thus the split Teflon O-rings were

not effective in preventing the reagents from attacking the back stainless

steel portion of the valve simulators. Apparently the corrosion products

caused the decomposition of the derivatives when evaporation of the deriv-

atives onto the column was attempted. Therefore, the old valve simula-

tors were abandoned and new all tantalum valves described in Section

3. 1. 6 were built as replacements.

For the first use with all tantalum and Teflon the standard deriva-

tive evaporation test was run with 25 nanomoles of each amino acid. Upon

heating to evaporate the amino acids onto the column, thermal expansion

caused the valve to close above 750C, preventing He flow. Therefore,

evaporation onto the column was carried out at 700C. The resulting

chromatogram was quite good however, with only glutamic acid smaller
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than expected. This indicates that only 75 0 C is necessary to evaporate

derivatives through phenylanine.

After some additional valve modifications, full derivatization was then

attempted in the unit on an aqueous solution of amino acids (25 nanomoles

each). The solution was injected into the breadboard derivatizer, evap-

orated to dryness at 500C under vacuum and derivatized with butanol/HC1

and trifluoracetic anhydride/methylene chloride. Valves were barely

functional for this test, sticking closed on several occasions. The GC

results, however, were positive, as shown in Figure 3-23. One large

unknown peak is present between Leucine and Glycine and the glutamic

peak is somewhat smaller than expected.

On the basis of this good result, an end to end system test was run

in order to use the full breadboard (several hydrolyzer through IEC

tests had already been completed successfully) as a system and to run

a soil derivative in the derivatizer cell. Valves were reworked prior

to this test so that they functioned reliably. The soil for this end to end

test was Waukena diluted with blank soil (25 percent Waukena) to reduce

the amino acid content in the sample below 50 nanomoles since the GC

column starts to show overloading effects with more than 50 nanomoles.

Small quantities of 14C labeled amino acids were also added to the soil

to aid in monitoring the intermediate steps. The chromatogram ultimately

resulting from the end to end test showed a very large broad peak which

masked any possible amino acid peaks. Upon opening the derivatizer

cell, approximately one-third the radioactivity was recovered, indicating

a large percentage of the sample was not transferred to the GC column.

Furthermore, it was observed in the laboratory glassware control that

the sample contained a waxy solid, apparently peculiar to the blank

soil as it has not been observed in Waukena soil samples.

After thorough cell cleanup, two standard derivative mixtures were

injected into the derivatizer cell to confirm the unit was still functional.

First 25 nanomoles were chromatographed successfully followed by 2.5

nanomoles as seen in Figure 3-24 (new chromatogram 4). These tests

confirmed that the cell was sealed, no obvious material problems existed,

and the nominal injection procedure was functional.
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A derivatization starting with a pure aqueous solution of amino

acids (25 nanomoles each) was then performed. The chromatogram

(on Carbowax 20M) showed all the amino acids and in addition had an

unknown peak following Leucine as was observed previously.

As another derivatization test on a sample derived from soil (and
14

also as a modified end-to-end system test), 25 percent of a C labeled

Waukena soil sample processed from hydrolyzer through IEC was injected

into the derivatizer. The ammonia solution was evaporated to dryness

and derivatized, using normal reagent volumes. The derivatization pro-

ceeded smoothly. The chromatogram, however, again had a very large

impurity peak. No amino acids were observed. Radiotracer meas-

urements showed a significant portion of the radioactivity again remained

in the cell.

Based on a comparison of the results from pure amino acids with

those from samples derived from soil processing and with results from

lab processing, it was concluded that some sort of material was present

in the samples derived from soil processing that was interfering with

transfer of the amino acid derivatives to the column and with the subse-

quent gas chromatographic analysis. Furthermore, it was concluded that

this material was not soluable in CH 2 C 2 and hence did not interfere with

lab samples since the derivatives in those samples were dissolved in

CH 2l12 in order to inject them into the gas chromatograph. Thus the

problem with soil derived samples arose as a part of the heating of the

derivatizer to volatize the derivatives. The interfering material may

have come from the soil itself, or it may have come from the ion exchange

column. It did appear that the amount of material present in lab deriva-

tization vials was soil dependent. However, the material still could be

coming from the ion exchange resin since the amount and nature of the

salts from the soil could affect the amount of material released by the

resin.

The hypothesis that the problem with soil derived samples was from

volatization of an interfering organic material was tested as follows: a

25 percent aliquot of a sample derived from 14C labeled Waukena soil

processed as usual through the IEC step was injected into the derivatizer
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cell and derivatized. The cell was then opened and the final product

dissolved in methylene chloride. The chromatogram of 20 percent of

total sample (Figure 3-25) showed all amino acids with no extraneous

peaks prior to glutamic acid.

This demonstrated that the derivatizer was functional up to the

point of derivative injection onto the CG column, and tends to confirm

that the extraneous peaks seen in previous tests were caused by

volatilization of material not soluble in methylene chloride.

Several days later, the derivatizer was reassembled and heated

with the nominal CG injection procedure to volatize any material remain-

ing in the cell onto the CG column for analysis. Only a small baseline

increase was observed in the chromatogram indicating that a large amount

of material was not driven out of the derivatizer into the CG column. It

is not known why so little material was seen in this test. Possibly the

non-CH2Cl 2 soluble material was lost or decomposed while the deriva-

tizer was open and exposed to air.

It is possible that the interfering material seen in the end to end

tests with Process No. 1 may not occur with the new baseline process.

Further testing with the current cell may elucidate methods of circum-

venting the interfering material. Removal of all non-metallic components

may be of value since the interfering material may be absorbed in the

Teflon. Use of a different CG liquid phase may also reduce the effect of

the interfering material.

If other solutions are unsatisfactory, it should be possible to carry

out sample removal from the derivatizer and sample introduction onto the

CG column in a manner similar to laboratory methods by extracting the

derivatives out of the derivatizer with CH 2 C12 and transferring the solu-

tion to another small cell which would then be used to evaporate the

derivatives into the column. (Prior low temperature evaporation of the

methylene chloride into the vent might be necessary.)

After cleaning the derivatizer and installing new seals, the final

test which was derivatization of optically active amino acids with optically

active 2-butanol/HC1 was carried out. The only difference between this

test and previous tests with pure amino acids was the use of optically
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active 2-butanol instead of inactive 2-butanol, and the replacement of the

tantalum seals with new ones of the same type.

The chromatogram resulting from the test is shown in Figure 3-26.

No observable racemization had occurred. The small peaks in the (D+),

(L-) position are caused by the residual (-) butanol isomer in the alcohol

rather than from amino acids racemized to the D configuration. The

other encouraging result is that there were no significant interfering

peaks to the chromatogram at the 25 nanomole level. Thus it appears

that the only outstanding problem with the derivatizer is the interfering

material observed with soil derived samples, and it is felt that at least

one solution exists for this problem.

3. 2. 1. 5 Self-Heated Gas Chromatographic Column

Prior to fabrication of the actual breadboard self-heated column, a

short engineering model was fabricated for preliminary evaluation. This

model was constructed from a 100 foot of 0. 062 inch OD by 0. 0023 inch

ID section of stainless steel tube wound on a fiberglass mandrel and was

instrumented with five thermocouples. The tests were conducted in a

vacuum to provide a thermal environment similar to the heavily insulated

flight design concept. The column was programmed over a range of 250

to 250 0 C in the self-heated mode. No temperature control problems were

observed.

Based on the satisfactory performance of the model, the prototype

self-heated column described in Section 3. 1. 7 was designed and fabricated.

After the prototype column was completed, except for installation of the

spool in the can and packing with the liquid phase, engineering thermal

tests were conducted with the column packed in insulation to simulate the

final configuration. The temperatures recorded (at approximately steady

state) using the center thermocouple for the control (TC No. 4, Figure

3-17) are shown in Table 3-4.

The temperature difference between the middle of the column

(TC No. 4 and TC No. 6) and the portions of the column at the ends of the

spool appeared to be caused by the higher conductive losses resulting

from contact with the aluminum spool. The flight design, which uses a

thermal insulator for the spool, should have much lower thermal losses
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Table 3-4. Steady-State Temperatures

Control TC TC TC TC TC TC
(TC No. 4) No. 1 No. 2 No. 3 No. 5 No. 6 No. 7

920C 80 84 80 77 92 81

1400C 122 128 124 122 137 122

2040C 179 189 184 182 190 179

at the spool ends. Also, some improvement was expected with the

prototype when it was installed in the can and packed with the aluminum

oxide insulation. After installation in the can and addition of the aluminum

oxide sphere insulation, the column was coated with Carbowax 20M via the

standard procedure resulting in a 46 milligram loading. It had been

planned to heat the column using an SCR type linear temperature pro-

grammer. However, AC feedback through the control thermocouple

occurred and interfered with operation of the temperature programmer.

Therefore, the column was heated with a DC power supply and a thermo-

couple on-off controller. Temperature programming was accomplished

by applying sufficient power to the column to obtain the approximate rate

of rise desired. The thermocouple controller was used to set the upper

temperature limit.

To evaluate if the column was properly coated, it was installed in

a GC oven and held isothermally and operated as a normal column. The

resulting chromatograms with standard derivatives showed good resolu-

tion and separation. Next, several chromatograms were run in a self-

heated mode, but they were not interpretable, apparently because of

insufficient conditioning of the column. There did not appear to be any

interaction between the column heating power supply and the GC detector

electrometer even though insulating unions were not used (power was

applied to the middle of the column with the two ends being at ground

potential).

After additional conditioning, the column gave much better results.

Injection of standard derivatives into the cold column followed by pro-

gramming the column in a self-heated mode at approximately 20C/min

(ballistically) gave good results through proline, but the later peaks were
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poor as shown in the upper curve in Figure 3-27. It was felt that this was

a result of cold spots somewhere in the system either in the column itself

or in the line between the column and the detector. Modifications were

made to the connecting line heater to ensure that it was adequately heated

which did not affect the chromatogram. Thus, it was concluded that there

must be cold spots within the self-heated column itself. The most likely

area for these cold spots was the interface plate where the column and the

electrical leads were fed through. To test the cold spot hypothesis, the

column was put in a GC oven such that after injection onto the cold column,

the outside of the column was heated by heating the GC oven to 170 0 C.

This external heating had only a small effect on the column temperature

as a whole because of the high degree of insulation. The column itself

was operated self-heated in the same manner as before. The chromatogram

in this case was excellent (Figure 3-27), lower curve) for all the sample

constituents (Ala, Leu, Gly, p-Ala, Pro, Asp, Phe, Glu) recorded. The

aspartic acid resolution of 37 percent was typical for our results with

0. 030-inch ID Carbowax 20M columns. This confirmed that the only prob-

lem with the self-heated column was the presence of some cold spots.

Additional heaters on the ends of the spool were added to remove

the cold spots. The prototype column was then reassembled and tested

again with standard derivatives. The sample was injected in CH 2C 2 via

a heated injection port into the column which was at 300 C. The column

was then heated in the self-heated mode with power also applied to the

auxiliary heaters. The chromatogram shown in Figure 3-28 demonstrates

satisfactory performance. Thus, the basic concept and design has been

confirmed. Some redesign of the prototype is desirable, however, to

reduce the amount of auxiliary heat needed.

The prototype column was not tested for life, but laboratory

Carbowax 20M columns have storage times of at least several years.

The columns last 2 to 5 months in heavy use so that both the storage life

and the number of analyses available for calibration and test as well as

mission use are expected to greatly exceed that which is required for a

successful mission.
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3. 2. 1. 6 Valve Simulators

No special testing of the valve simulators was carried out except

for functional and leak checks. Instead, evaluation of the valve simu-

lators is based on their performance while in use on the breadboard. In

general, the original valve simulators worked reasonably well in that part

of the breadboard where they were only exposed to aqueous reagents. The

valve simulator used on the hydrolyzer did have some leakage problems

but this was probably caused by soil particles getting in the valve. The

breadboard hydrolyzer valve was a slightly larger design than those used

in the rest of the system and hence had a larger sealing surface and was

more prone to leakage. It is recommended that the outlet valve block on

that unit be replaced with one which will accommodate the smaller valves.

No significant problems were encountered with the valve simulators on the

evaporator, ion exchange column, and the SC-i, SC-2 valve block. Some

external corrosion of the outer stainless steel parts occurred because of

the generally corrosive environment of the breadboard. This external

corrosion did not cause any problem except in one case where the spring

in the simulator degraded and did not apply adequate force. This was

corrected by replacing the spring.

As discussed in Section 3. 2. 1.4, the original valve simulators

were not satisfactory when used on the derivatizer. The original valve

would not function without an elastomeric shaft seal and the elastomers

produced interfering material in the derivatization. These results lead

to the design and fabrication of a valve simulator which had only tantalum

and Teflon exposed to the derivatization reagents. Early versions of the

all tantalum valves had some mechanical problems which caused the valve

to close when heated, but the final version worked quite well and much

better results were obtained with the derivatizer when these valves were

used. It appears that flight valves with characteristics similar to the all

tantalum/Teflon valve simulators will work satisfactorily throughout the

system with either Process No. 1 or the new baseline process.
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3. 2. 2 Breadboard System Tests

Following breadboard component tests, various system level tests

were carried out, primarily with the hydrolyzer, evaporator, and ion

exchange column combined so that the entire soil processing and desalting

portion of the experiment was tested as a system. Also, two complete

breadboard "end-to-end" tests were conducted with the entire breadboard

tested as a unit with only the gas chromatographic analysis being perfor-

med outside of the breadboard. The number of system tests and the

number of soils used were limited because the interfering material

problems from the ion exchange resin and the Teflon filters, and the inter-

ference problems with the derivatizer prevented meaningful tests from

being conducted earlier in the program.

The basic conclusions reached concerning the system level bread-

board testing was that most of the results were very favorable. The

radiotracer recoveries for the hydrolyzer through IEC portion of the pro-

cessing ranged from 54 to 82 percent. However, the recoveries were

reduced by the various operational problems, primarly, channelization of

the IEC caused by gas being pushed through it. Based on component tests

and the known losses, 85 to 95 percent recovery could be expected in the

absence of problems associated with manual operation. Freedom from

racemization was demonstrated which is a most important result. Prob-

lems observed were the continuing low level contamination produced from

the Teflon filter material, and the derivatization problems which occurred

in the end to end tests. In changing from Process No. 1 to Process No. 2

most of the difficulties encountered in the system level testing should not

occur or should be minimized. Because of the deletion of a precipitation

step in Process No. 2, there will be no difficulty in transferring processed

solution into the 5 milliliter IEC, and hence channelization can easily be

avoided and losses of amino acids from this cause will be eliminated.

Thus, amino acid recovery (excluding extraction efficiency considerations)

should be high (~90 percent) for the processing part of the breadboard with

Process No. 2. As discussed in component testing, contamination from

the Teflon filters can probably be reduced or eliminated. The remaining

significant problem is that associated with evaporating derivatives out of

the derivatizer and onto the GC column, and, as discussed in Section
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3.2. 1.4 (derivatizer component testing), at least one solution does exist

for this problem.

In summary, with either Process No. 1 or Process No. 2, we have

great confidence that a successful experiment can be carried out and in

changing to Process No. 2, most of the problems we have experienced

will not occur or can be solved readily.

3. 2. 2. 1 Hydrolyzer Through Ion Exchange Column System Tests

System Blank: The hydrolyzer, the SC-I, SC-2 valve block, the

evaporator, and the ion exchange column were connected in the nominal

system configuration as shown in Figure 3-1. (At this time NH40H had

been substituted for NaOH). The only deviation in the system flow path

was the absence of the liquid level sensor. The filters used in the hyd-

rolyzer and evaporator were the usual combination of backup, 10 micron,

5 micron, backup Teflon filters. These filters were soxhlet-extracted

with 6N HC1 prior to use. After assembly, the hydrolyzer and evaporator

were heated with 6N HC1 and rinsed with distilled water. These rinsings

were not passed into the ion exchange column (IEC). The processing was

carried out for the standard times with the reagents specified for Process

No. 1. The only difference between this test and a soil test was the

absence of soil.

Phenolphthalein was added to the 10 milliliter evaporator wash to

monitor the IEC effluent. The collection of the 7 milliliters of IEC effluent

following NH40H breakthrough included the 0.3 milliliter of solution which

was in the 1/8-inch Teflon line connected to the IEC outlet prior to the

appearance of the phenolphthalein color.

Evaporation of the NH40H and the subsequent derivatization steps

were carried out in the lab glassware. There were several significant

interfering peaks in the gas chromatogram (Carbowax 20M column) simi-

lar to those observed in ion exchange column blanks (Section 3. 2. 1. 3).

The two largest interferences were one of approximately 30 nanomoles

near valine, and one of 130 nanomoles near leucine (later demonstrated

to be trifluoroacetamide).

A number of amino acids were detected, including 16 nanomole Ala,

25 nanomole Gly, 4 nanomole 3 -Ala, 6 nanomole Pro, 6 nanomole Phe,
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11 nanomole Glu. Interfering peaks prevented the measurement of Val,

Leu, and Asp, but the maximum quantity of Asp plus interference is 18

nanomole. These amino acid quantities were lower than previous bread-

board evaporator blanks but still were excessive. The Teflon filters are

still felt to be a likely source of amino acid contamination.

Waukena Soil Test: Except for the IEC, only minor cleaning was

required to ready the breadboard for the soil test after the system blank.

The hydrolyzer was rinsed with redistilled water, the evaporator was

flushed with 6N HC1 and then redistilled water. The liquid level sensor

was washed with HC1 and water and installed in the liquid path out of the

evaporator. The IEC was regenerated with HC1 and then washed to

neutrality. During the wash, the column was backflushed for a while to

attempt to reduce any channelization which might have occurred in earlier

testing.

The Teflon filters in the hydrolyzer and evaporator were not

replaced for this test since after rinsing they should have been even

cleaner than before the system blank.

The sample used for the test was 1 cubic centimeter of Waukena soil

to which 2 microliter quantities of 14C labeled amino acid solutions were

added. The radiotracers provided approximately 200, 000 DPM each of

proline, phenylalanine and glutamic acid. The hydrolysis, evaporation

and HF/NH40H processing steps were carried out satisfactorily. The

filtration step was very slow, approximately 0. 2 cc/min at 20 psi pressure

differential. The restriction was apparently caused by the precipitate

clogging the Teflon filters. The time required for filtration at this rate

was excessive, and it was felt desirable to change the filter configuration

or to increase the pressure across the evaporator. Gas was pushed

through the IEC during transfer of the evaporator rinse. Channelization

of the IEC evidently occurred because of this gas event since early break-

through of some radioactivity (~5 percent of the initial quantity) was detec-

ted in the IEC effluent during the 30 milliliter column wash. The amount

of radioactivity detected in the 7 milliliters of solution after ammonia

breakthrough was 81 percent of the initial quantity. Another 7 percent

was accounted for in the accumulated column wash and pre and post 7

milliliter samples.
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A similar sample of Waukena soil was processed in laboratory

glassware as a control. Some of the filtrate from the HF/NH40H pro-

cessing was lost so the overall radiotracer recovery was reduced. The

7 milliliter fraction of the ion exchange effluent after NH40OH breakthrough

contained 76 percent of the initial radioactivity. Derivatization in labora-

tory glassware and gas chromatographic analyses were completed on the

breadboard and lab Waukena soil processing samples. Table 3-4 summar-

izes the radiotracer results. The derivatized samples were analyzed by

gas chromatography on a Carbowax 20M column. The chromatograms

from the breadboard and lab samples were very similar except that the

breadboard sample gave larger amino acid derivative peaks as would be

expected from the fact that the overall radiotracer recovery was greater

for the breadboard sample. The average ratio of the breadboard sample

peak areas to the lab sample peak areas was 1.41 (Table 3-5), close to

the ratio of overall radiotracer recovery which was 1. 37. The interfering

peak thought to be caused by trifluoroacetamide (which occurs at the leu-

cine position on Carbowax 20M) was larger in the lab sample than in the

breadboard sample. The overall results of the test are considered good.

Table 3-4. Breadboard Hydrolyzer Through IEC Waukena Soil
Test-Radiotracer Results

Breadboard Sample Lab Sample

Percent Percent
DPM Recovery DPM Recovery

Initial quantity 614, 000 614, 000
(Pro, Phe, Glu)

Ion Exchange

Column Wash 27, 2 0 0 a 27, 2 0 0 b

Precuts 11,600 5, 058

Prime Fraction 495, 000 80. 6 470, 000 76.5

Postcut 800 1,350

Recovered in Clean up 31,300 5,410

Total counts accounted for
thru ion exchange step 566,500 92.3 481,800 78.5

Final Derivative 355,500 57.9 259,500 42.3

aCollected during 30 milliliter column wash prior to NH 4 0H elution.
bApproximately 25 percent of sample lost by spillage.
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Table 3-5. Breadboard Hydrolyzer Through IEC Waukena Soil
Test- Chromatographic Re sults

Amino Acid Peak Area Ratio Breadboard/Lab

Breadboard Lab
Processed Processed

Sample Sample

Vala 161,400 120,600 1.33

Ala & 1 Leu 746, 100 493, 100 1. 51

Leu + NH3 667, 700 1,268,000 0.53b

Leua 213,500 173,200 1.23

Gly 546,000 346,100 1.31

P-Ala 74,400 52,500 1. 42

Pro + unknown 323, 700 170,300 1. 9 0b

Asp 693,900 400,200 1. 73

Phe 203,000 182,500 1.11

Glu 604,400 368,700 1.64
average
ratio 1.41

Conditions: Carbowax 20M column 0. 030 id x 200 ft., Varian 1860
Gas Chromatograph Electrometer setting 1 x 10-11 amps. N-TFA,
D, L-2-butyl derivatives. Because of D, L-2-butanol, the two peaks
obtained for optically active amino acids are summed except:

a When an interference occurs on one peak only the non-interferred
peak was used.

bNot used to obtain average ratio.

An extensive cleanup was carried out at the conclusion of this test

which included replacement of most of the 1/16th-inch Teflon interconnect-

ing tubing. Post-test inspection of the breadboard components during

cleaning indicated that the components were still in good condition. The

Creavey seal in the hydrolyzer showed some corrosion of the inner stain-

less steel spring, so it was replaced with a new one. The Teflon-coated

stainless steel spring used in the ion exchange column was inspected dur-

ing repacking and was found to be in excellent condition with no evidence

of attack.
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Cleaning Tests. The hydrolyzer filters were replaced with new

soxhlet-extracted ones of the same type. In the case of the evaporator, a

new type of Teflon filter cloth was used as the upper filter in an attempt

to prevent clogging that occurred with the type of filter cloth previously

used.

Because the previous system blank had shown significant quantities

of amino acids and other material, some cleaning tests were conducted to

see if additional cleaning in the assembled units would reduce the amount

of contamination. After the usual cleaning procedure which consists of

several short soaks with hot 6N HC 1 and rinses with distilled water, pro-

longed heatings of the hydrolyzer and evaporator were carried out with

6N HC1 in the units. After these heatings, the HCI was collected, evap-

orated to dryness and derivatized. The resulting derivatives were analy-

zed by gas chromatography to determine how much material was present

and if the samples from the second heatings of the two units were any

better than the first. In the case of the hydrolyzer, 7.5 milliliters of 6N

HC1 was used with the cell being heated for 18 hours at 1000C. The

resulting derivatives showed a number of peaks, both amino acid and

non-amino acid. The amount of amino acids was smaller in the second

sample than in the first, but the results were complex for the non-amino

acid material, and the overall quantity of non-amino acid material

appeared to be larger in the second sample than in the first.

In the case of the evaporator, 30 milliliter of 6N HC 1 was used,

again for 18 hours at 100 0 C. After this period, most of the HC1 solution

was evaporated from the evaporator. The remainder (5 milliliter in one

case, 10 milliliter in the other) was collected, evaporated and derivatized

in the derivatization vials. The gas chromatographic results were similar

to those from the hydrolyzer in that the amount of amino acids seen in the

first sample were greater than in the second, while the results for the

non-amino acid material were complex. The overall level of material

found was greater for the evaporator than for the hydrolyzer. Most of

these problems should not occur with the new baseline process because

the filtration requirements are much different from Process No. I and

the filter design can be altered or in the case of the hydrolyzer/evaporator,

the filter may be unnecessary.
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System Blank. After the above cleaning tests, the hydrolyzer and

evaporator were rinsed with redistilled water, the IEC was regenerated

and a no-soil system blank was run. The hydrolysis and evaporation part

of the processing proceeded normally. The filtration of the solution after

the HF-NH40H processing was slow, and 50 psig of He pressure was

required to obtain 0.4 mil/min flow rate. Apparently the new Teflon

filter cloth was also blocked by the NH 4 F precipitate. The liquid level

sensor failed to operate during this test, apparently because of the form-

ation of a conductive path which was present even when gas was passing

through the sensor. In this test, only a small amount of gas entered the

IEC. The reaminder of the IEC processing was carried out without diffi-

culty and the 7ml of NH40H effluent was evaporated and derivatized in the

lab. It was obvious after evaporation of the NH4 0H that a large amount of

material was present in the sample so that only 2. 5 percent (rather than

25 percent) was injected onto the Carbowax 20M column for gas chromato-

graphic analysis. The chromatogram showed a number of interfering

peaks, some of which were very large. The peak ascribed to trifluoro-

acetamide indicated a quantity of approximately 2 micromoles, and in

general this system blank was considerably worse than the one run earlier.

The major difference between the two system blanks was the use of a new

type of Teflon filter cloth in the evaporator. The source of this filter and

some of the other filters is Chemplast. We have since learned that

Chemplast prepares Teflon filters which are replicas of cellulose type

filters; that Teflon is sintered over the cellulose material to be replicated

and that the cellulose is "burned off" during the sintering process. We

did not discuss this with Chemplast, but if such a process has been used

to prepare the filters, there may have been sufficient organic matter left

after the sintering process to result in the contamination that was obser-

ved in these tests. Such material may not be easily removed by the HC1

cooking procedure used for cleaning and may come out in large amounts

during the HF-NH4 0H processing step. This could account for the fact

that the system blank was much worse than the individual hydrolyzer and

evaporator HC1 blanks.

Because of the filter problems, a series of filter tests was carried

out in the evaporator which is discussed in Section 3. 3. 25. Based on

these tests, 10-micron Millipore Teflon filters were selected for use in
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the remainder of the testing as being the best reagent compatible material

available at that time even though they were not completely satisfactory.

The breadboard was cleaned, the IEC was repacked and regenerated,

and then a hydrolyzer through IEC system blank was run. Two nanomoles

each of 14 C labeled alanine, proline .phenylalanine, and glutamic acid were

added to monitor amino acid recoveries in a very low level situation.

After the HF/NH4 0H step was complete and transfer of the solution

to the IEC had started, a large volume of gas was pushed through the

evaporator and into the IEC even though approximately half of the solution

was still in the evaporator. Apparently the evaporator standpipe was so

close to the filter that the gas was able to push through the liquid and pre-

cipitate and flow directly out of the cell. The cell was not being pressur-

ized via the standpipe, but a leak in the external gas lines allowed the

standpipe to be pressurized. This problem was solved by disconnecting

and capping off the line leading to the standpipe through valve S-2. The

flow rate of liquid out of the evaporator was very slow when it was flowing

properly, being 0. 1 ml/min. Increasing the pressure on the cell did not

appear to cause much change in flow rate. Apparently the additional

pressure compresses the precipitate so that it becomes more of a res-

triction at high pressures. As usual, the IEC effluent was collected

throughout column operation. The precuts (solution prior to NH 4 0H

breakthrough) contained 11 percent of the original radioactivity indicating

that channeling in the IEC was very severe. The 7 milliliter prime cut

contained 65 percent of the radioactivity. After the sample was removed

for radiotracer measurements, the bulk of the prime cut was transferred

to the derivatizer and the nominal derivatization process was carried out.

The product was evaporated onto a lab GC column. As discussed in Sec-

tion 3.2. 1.4, only a very large interference was seen in the gas chroma-

togram. In light of the severe channeling of the IEC and other problems,

the recovery of 65 percent in the prime cut is not surprising. The total

recovery from the breadboard including pre and post cuts, and known

losses was 84 percent. No soil was used in the test, instead 7 to 5 milli-

liters of 6NHC1 containing the radiotracers was heated in the hydrolyzer

for the nominal 16 hours at 1100 C. The remainder of the preprocessing

was carried out nominally. The flow rate out of the evaporator through
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the IEC after HF/NH4 OH processing was 0. 7 ml/min at 46 psig. When the

filtration of the liquid was finally complete at that pressure, and the gas

penetrated the filter, the remaining liquid in the lines moved very rapidly,

and it was not possible to prevent some gas from entering the IEC, again

causing channeling and somewhat reduced recovery in the 7 milliliter

prime cut from the IEC elution (81.5 percent of the original radioactivity

recovered). The evaporation and derivatization was carried out in the

lab. The chromatogram (run on Carbowax ZOM) was relatively clean with

both the amino acid contamination and the interfering material peaks being

at a low level (except for the trifluoro-acetamide peak) prior to the glu-

tamic acid peaks.

3. 2. 2. 2 End to End System Tests

The next test was designed as a complete end to end (hydrolyzer

through derivatizer) test. Because the quantity of amino acids in Waukena

soil (>200 nanomoles/cc for some amino acids) is sufficient to overload

the column, the Waukena soil was diluted with blank soil in a 25:75 ratio

in order that the sample used would contain no more than approximately

50 nanomoles of any given amino acid. The one cubic centimeter of 25

percent Waukena/75 percent blank was innoculated with 2 nanomoles each

of 14C labeled alanine, proline, phenylalanine and glutamic acid to moni-

tor the intermediate processing steps.

The quantity of NH 4 0H used in the HF/NH40H processing was

changed from 14 milliliters to 16 milliliters based on laboratory processing

of blank soil samples which showed that an extra 2 milliliter of 4N NH 4 0H

was required to reach pH9 for the blank soil as compared to Waukena soil.

There were several hardware and procedural problems which occurred

during this test.

After removal of 0. 25 inch of tubing from the end of the evaporator

standpipe, cleaning of the breadboard, repacking and regeneration of the

IEC, the final system test was carried out. This test had two goals, one

of which was to carry out another end to end system test, and the other

was to provide a sample processed from the hydrolyzer through the IEC

to be derivatized with optically active 2-butanol for information on possi-

ble racemization effects in the breadboard processing. The soil sample

was 1 cubic centimeter of Waukena soil innoculated with 2 nanomoles each
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of the same 1C labeled amino acids as those used in the previous two

tests. Procedural problems occurred which resulted in extra losses.

The hydrolysate evaporation process was erroneously started with the

evaporator at too high a temperature which resulted in bumping when

the vent valve was opened. Post-test sampling of the vacuum system

traps revealed a 13 percent loss of radioactivity because of this problem.

The flow rate out of the evaporator through the IEC after the HF-NH40H

processing was 0. 25 ml/min at 47 psig. The spring on the S-6 valve

simulator (IEC inlet) caused difficulties during IEC operation. The spring

had become corroded because of the general environment surrounding it.

Because of the spring, the valve did not operate reliably, and gas was

pushed through the IEC again. Eighteen percent of the radioactivity was

collected in the IEC effluent prior to NH 4 0H breakthrough. The 7 milli-

liter prime cut contained 54 percent of the radioactivity. After collection

and radiotracer sampling, the 7 milliliters were divided into two aliquots.

Twenty-five percent of the sample was introduced into the derivatizer

and a nominal derivatization carried out. As discussed in Section 3. 2. 1.4,
the chromatogram resulting from this derivatization again showed only a

large interference. The remaining 75 percent of the 7 milliliter IEC

prime cut was derivatized in laboratory glassware using optically active

(+)-2-butanaol/HC1. The resulting chromatogram (Figure 3-29, upper)

indicates that no significant racemization had occurred as a part of the

breadboard processing. Where measurable, the diastereomer ratios for

the test sample and for standard amino acids (Figure 3-29, lower) are

equivalent.
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3. 3 SUPPORTING LABORATORY STUDIES

In addition to the laboratory processing tests run as controls in

parallel with breadboard tests, a variety of supporting laboratory work

was performed. Standard procedures and methods were established,

reagents purified, and material compatibility tests run.

3. 3. 1 Soil Tests

Of the soils provided by NASA/ARC/Waukena, Aiken, Hazen,

Death Valley, Volcanic Ash and blank), Waukena and the blank were used

for most of the lab testing and all of the breadboard testing. The other

soils except volcanic ash were all run at least once in the lab. No unusual

problems occurred with any of the soils although considerable variation

(±2 milliliters) was found in the amount of 4N NH40H needed to achieve

the desired pH of 9 in the HF/NH40H processing. The effect of soil

variability is expected to be much less with the baseline process, but this

needs to be evaluated.

Earlier in the program before the breadboard components were

ready for testing, lab processing tests were carried out to gain familiarity

with the Process No. 1. A test of soil processing efficiency was run in

duplicate (Samples A, B), with labeled amino acids to determine losses

at various steps in laboratory glassware. 0. 05 C each of glycine-14C,
14 14lysine- C, and glutamin- 1 4 C, equivalent to about 164, 500 cpm were

added to 1 cubic centimeter Waukena soil samples which were then

processed. Results are in Table 3-6. Samples were taken and numbered

according to the experimental sequence. Hydrolysis rinses A and B con-

sisted of 15 to 20 milliliters wash water rinses of the hydrolysis vessel

after the prescribed 5 milliliters rinse of Step 5. This water was not

added to the hydrolysate.

Sample A-9 was 0. 1 milliliter taken prior to filtration of the

NaOH/HF processed solution (contained salts). Sample B-9 was 0. 1

milliliter taken after filtration of the NaOH/HF solution. Some of the

radiotracers were stuck onto the precipitate, but the next step, Samples
A-9W, B-9W proved these amino acids were washed off with the 10

milliliters water wash.
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Table 3-6. Soil Processing Recoveries

Calculated
cpm From Calculated

Measured Volume Recovery
Step cpm Sampled Percent Notes

Hydrolysis

Step 5 Extra rinse A 548 2, 200 Some loss Extra rinse not added to
Extra rinse B 1,764 2,200 hydrolysate

Step 7 A-7 1,478 143,000 87 Sampled after 10 milli-
B-7 1, 398 135,000 82 liters H 2 0 added to

evaporated hydrolysate

Desalting

Step 9 A-9 578 147,000 89 A-9 before filtration
B-9 521 130,000 79 B-9 after filtration

Wash A-9W 158 11,000 6.6
B-9W 302 15,000 9.1

Sum A-9 + A-9W 158, 000 96
Sum B-9 + B-9W 145,000 88

After Ion Exchange

Al0 a 648 600 Negligible loss a = 2 milliliters prior
to ammonia collection

A10 1,854 126,000 77 percent 0 = 2 milliliters after
A10 S0 438 390 Negligible loss the first 7 milliliters of

NH 3 solution
B10 a 10,629 10,580 Early breakthrough
B10 518 32, 800 20 percent
BIO 2 607 560 Negligible loss



It is seen that little was lost during processing until the ion exchange

resin where anomalous results were obtained for replicate samples.

Resin column B was allowed to go dry briefly and flow stopped whereas

with column A, ammonia was added to keep head pressure constant. The

early breakthrough and the low recovery are both ascribed to allowing

column B to go dry during elution, and hence this was not a result of a

problem that would have any significance to a flight instrument.

Much better recoveries were obtained in subsequent testing. The

early lab and evaporator processing results (described in Section 3.2.1.2)

were discussed in a meeting at NASA/ARC. Based on these results and

other considerations (simplicity of pH control, fewer reagents, and ease

of purification), it was decided that 4N NH4 OH should be substituted for

the NaOH solution. Preliminary laboratory experiments were carried

out to confirm the desirability of this step.

An HF/NH40H titration with and without Waukena soil hydrolysate,

Figure 3-30, showed the system to be well buffered and less subject to

wide pH variations compared to HF/LiOH titrations observed previously

(Design Study, TRW Final Report No. 16660-6001-RO-00, Figures

4. 1. 2-1 through -4). Based on these curves it was decided to use

2 milliliters 4N NH 4 OH more than required to reach the equivalence

point. This leads to a pH of 8. 8 with samples derived from Waukena soil

which is in the desirable range and allows for large variations in the

residual acidity from the evaporated soil hydrolysate. Use of a large

excess of NH40H is undesirable because it would lead to higher pH's, and

would reduce the effective capacity of the ion exchange resin.

Next, laboratory radiotracer processing experiments were carried

out with two samples of Waukena soil hydrolysate: sample A with 14C

labeled proline, glutamic acid, lysine, and phenylalanine; and sample B

with C14 labeled alanine, leucine and valine. Approximately one million

cpm total were added to each sample.

The labeled soil hydrolysates were evaporated to dryness, desalted,
ion-exchanged and derivatized in laboratory glassware along with appro-

priate controls: a system blank, an ion exchange blank, and a derivatiza-

tion blank. Samples were taken for radiotracer counting at various points

to follow amino acid losses.
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The results of the radiotracer work are given in Table 3-7. Some
variation in recovery is seen for the two samples. This is felt to result
from handling losses rather than losses due to the ammonia reagent as the
data compare with that obtained earlier using NaOH as a desalting reagent.

The chromatograms for this series of derivatives were run simul-
taneously on Carbowax and Dexsil columns to test a new Dexsil column
and to collect background data on it while running under the same condi-
tions as on the Carbowax column.

The two soil samples A and B gave nearly identical chromatograms,
and no particular abnormalities were observed. On Dexsil, the major
interference peaks were beyond the amino acid peaks. The interference
peaks were not large, indicating that the system blank was improving.

Comparison with chromatograms from samples processed using
NaOH to neutralize the HF showed no significant changes in either amino
acid appearance or impurity peak size or location. Thus, the change
from NaOH to NH40OH in the precipitation step eliminated all reagent
injection problems in the evaporator by greatly minimizing the difficulty
in achieving the desired pH without causing any loss in performance
either in amino acid recovery or in interfering material.

3. 3. 2 Material Testing

Material tests were carried out as required throughout the program
to determine which materials were most suitable for cell construction,
seals, valve components and filters.

3. 3. 2. 1 Tantalum and Fansteel 63

Based on preliminary compatibility testing which showed that
tantalum was unaffected by the derivatization reagents, tantalum was
chosen as a candidate material for the derivatizer. Mixtures containing
selected amino acids (at 10 micromole quantities) were derivatized
using existing reagents with or without tantalum foil present. Semi-
quantitative GC analysis gave peak heights within ±10 percent for the two
samples for valine, glycine, proline, methionine and phyenylalanine,
which was within experimental error.
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Table 3-7. Radiotracer Recoveries for Soil Desalted with Ammonia

Sample A Sample B

cpm* Percent Original Cts. cpm* Percent Original Cts.

Hyd flask rinse 9,070 3,400

Prime filtrate 1,222,480 92.8 1,010,420 102.9

Filtrate rinse 58,410 44, 330

Ion Exchange

Pre-cut 3, 290 1,400

Prime eluent 1,213, 730 88.0 929,960 90.8
Post cut 1,400 730

co Transferring losses -13. 2 - 6.0
After HC1/2-Butanol 1,064,200 77.2 962,000 93.9
After TFA 973,200 70.6 1,016, 600 99.2
Derivative "  982,400 71. 3 871,400 85. 1

Corrected for background and for volume sampled.
Sample A labeled with proline 14C, glutamic acid 1 4 C, phenylalanine 14C, lysine 14C.

Total cpm 1, 378,490.
Sample B labeled with alanine 14C, valine 14C, leucine 14C. Total cpm 1,024,480.

After evaporation of TFA/CHZC1 2 and dissolution in CH 2 C12 .



Next, solutions containing 1IM each of the following amino acids

(alanine, valine, leucine, glycine, p-alanine, proline, aspartic, phenyl-

alanine, glutamic acid, lysine) were prepared for testing with -0. 5 gram

samples of tantalum and fansteel 63. Derivatives were prepared along

with appropriate controls.

Neither of these metals significantly altered the chromatograms

of the resulting derivatives within the reproducibility of the results.

Later in the program a possible alternate method involving acid

hydrolysis in the presence of HF was discussed. At the request of NASA/

ARC, the effect of this process on tantalum and Fansteel 63 was tested.

Two samples each of Fansteel 63 and pure tantalum were heated

separately for 16 hours in sealed Teflon containers at 1000 to 110 0 C in

HF/HC1 reagent prepared according to the procedure of Experiment

Sequence A-I, Fluoride Method, supplied by G. E. Pollock of ARC.

* The Fansteel dissolved completely.

* The tantalum corroded to a small fraction of initial size
and lost all structural integrity.

* The Teflon containers for these experiments survived the
treatment but seemed to absorb some quantity of the
solution.

These results indicate that it would be impossible to hydrolyze with

HF present using either of these materials. Furthermore, the degree of

attack was so great that it is considered unlikely that HC1/HF could be

evaporated from Fansteel or tantalum processing cells. These results

do not contradict our earlier tests of tantalum with HF in the HF-NaOH

(or HF-NH4 OH)processing step since the exposure time is very short and

the solution is cool.

3. 3. 2. 2 Ion Exchange Column Spring

A Teflon-coated spring for use in the ion exchange column was

tested with solutions it would be exposed to in this configuration. The

solutions showed no discoloration and the coated spring suffered no obvious

damage. The spring was incorporated into the breadboard ion exchange

column.
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At the completion of the program, after more than 15 tests and

regenerations, many of which involved multiple acid/alkaline cycling,

and more than 10 disassemblies and reassembly operations, the spring

remained in excellent condition.

3. 3. 2. 3 Seals and Valve Seat Materials

Viton E-60 and Creavey Seals:

At the first meeting with NASA/ARC, a question was raised about

the compatibility of Viton E-60 which was proposed for use in the bread-

board derivatizer and evaporator. Therefore, some brief tests were

carried out with several Viton E-60 O-rings and several O-ring seals of

an alternate type known as Creavey seals. The seals were refluxed with

6N HC1 for 18 to 24 hours and then inspected. The Viton seals, while not

seriously affected, did become swollen and showed evidence of some

surface flaking. However, the Creavey seals, which consist of a stain-

less steel spring sealed inside a Teflon (FEP) tube, (Sealol Co., Culver

City, California) were essentially unaffected. Thus the Creavey seals

were adopted in preference to Viton E-60 for exposure to hot HC1

s olutions.

Viton E-60 was also the material selected initially for derivatizer

valve simulator body seals. It was hoped that even if there were some

materials problems with the Viton, the metal-to-metal contact surfaces

between the cell contents and the seals would prevent any serious prob-

lems. Apparently this was not the case and early derivatizer tests

(described in Section 3.2.1.4) showed the Viton produced a large amount

of interfering material.

Therefore, the valve body seal was replaced with a Creavey seal.

Further testing of the derivatizer with Creavey seals present showed

some degradation of the seal with repeated use (especially the Creavey

seal used between the derivatizer body and head end). After several

derivatizations, the Creavey seal between the cell body and the head end

was found to have failed. The Teflon had taken a set and had cracked.

Upon close examination, corrosion of the inner stainless steel spring was

observed. Previous tests with unstressed Creavey Seals had indicated

that they were reasonably compatible with the derivatization process.
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However, a test carried out with a stressed Creavey seal showed that

this seal also developed a set and cracked during the derivatization,

leading to the conclusion that a replacement seals for the Creavey seals

in the derivatizer were necessary. This led to the development of an all

tantalum/Teflon seal.

For hydrolyzer and evaporator use it had been observed that

Creavey seals must be replaced after several tests. Thus, the tantalum/
Teflon seals are probably desirable in these locations as well.

Ethylene Propylene Rubber:

When problems with Viton in the derivatizer were first encountered,
attempts were made to see if ethylene propylene rubber (EPR) would be

a more suitable material for the shaft seals on the initial valve simulators

since replacement of the valve shaft seals with a non-elastomeric type

would have been very difficult. Portions of Viton and EPR O-rings were

put in derivatization vials and derivatizations carried out. The O-ring

materials were removed, the derivatization products were dissolved in

CH 2 C12 , and small portions were chromatographed. A 0. 5 percent

injection of the sample from the derivatization in the presence of Viton

resulted in a number of relatively large peaks; while in the case of EPR,
a 0. 5 percent injection was relatively clean. However, significant peaks

were observed from the EPR sample when 25 percent of the sample was

injected. Thus EPR was a superior material, but it was not completely

certain that it could be successfully used for the shaft seal. Tests were

then carried out with the derivatizer using EPR shaft seals in the valve

simulators to see if acceptable results could be obtained. However, as

discussed in Section 3.2.1.4, the interference was still excessive. These

results lead to the fabrication of the all tantalum/Teflon valve simulators

described in Section 3. 2. 1. 6.

Earlier in the program, samples of the ethylene propylene

terpolymer diaphragm material used in the VLBI "-4" configuration

solenoid valves were tested with some of the Wet Chemistry reagents.
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Separate samples were subjected to one of the following:

1) 6N HC1 overnight at 100 0 C

2) 2-butanol/HCl overnight at 100 0 C

3) TFA/CH 2 C1 2 overnight at room temperature.

In each case, the initially colorless solutions turned various shades of

yellow indicating that something was being extracted out of the diaphragms.

The diaphragms themselves changed color and swelled with the largest

swelling having occurred in 6N HCL. This swelling is undesirable because

it could prevent the valve from opening. These tests indicated that the

VLBI "-4" configuration solenoid valves would be unsatisfactory for use

with the Wet Chemistry reagents.

Omniseal:

One of the candidate seals to replace the derivatizer main cell body

seal was a type called an Omniseal (Aeroquipt Corp., Jackson, Michigan)

which is a Teflon seal backed up with a stainless steel spring. The Teflon

is thicker in an Omniseal than in a Creavey seal so it was hoped that the

Omniseal might have better performance. A derivatization test was

carried out in a small tantalum fixture sealed with an Omniseal. The

primary test evaluation was the appearance of the seal. At the end of the

test the stainless steel spring was somewhat discolored which indicated

attack by the 2-butanol/HC1. Therefore, it was concluded that Omniseals

probably were unsatisfactory for use in the derivatizer.

3.3. 2.4 Teflon

Teflon retains structural integrity upon repeated exposure to

reagents used in the processing scheme, but it is known that materials

(in particular, amino acids at trace levels) can be lost into the pores

under some conditions. Under other conditions contaminant materials

are released from the Teflon. For these reasons, Teflon has not been a

candidate material for cell construction. It has been used, however,
for filter material, gaskets and seals.

Some problems have been experienced in its use as filter material.

In particular, the background impurity level has been high, even after

soxhlet extraction with 6N HC1. (Discussed in Section 3. 2. 2, system

blank).
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Tests were run on Teflon rod and sheet to determine whether they

were responsible for unidentified peaks observed upon derivatizer heating

to evaporate the sample onto the CG column. The samples were first

derivatized in reaction vials, then removed. Methylene chloride was

added to the vials to dissolve any residue and 25 percent of the solution

was injected into the GC column. These showed no significant interfering

peaks.

The Teflon samples were then heated while attached to a GC column,

in a manner equivalent to derivatizer cell heating. Some baseline shift

was observed, but the magnitude of the broad baseline hump is considerably

less than observed on soil processing runs, leading to conclusion that

Teflon may not be the sole cause of the interfering material seen in most

of the derivatizations of pure amino acids in the derivatizer, or that the

interfering material may decompose on standing while exposed to air.

3. 3. 2. 5 Filter and Filtration Tests

Filtration out of the hydrolyzer and evaporator presented two prob-

lem areas; first that of the impurities released by the Teflon filters; and

second, that of clogging or leaking created by inadequate arrangement of

the filter stack. For these reasons, a variety of filtration tests were run,

both to find appropriate filter stack arrangement, and to find possible sub-

stitute material.

Tests were then run on the following filter arrangements by filter-

ing a mixed solution of water, HF and NH 4 through filters placed in the

evaporator:

1) 2 perforated Teflon plates bonded to porous backup
material. 2 millipore Teflon filters (5 L, 10 L) previ-
ously extracted in 6N HC1. Filtration was successful.

2) Whatman glass fiber filter GF/A - 1 filter support
(Teflon, perforated plate). Filtration fast but unsuc-
cessful; the precipitate came through.

3) Support - Whatman glass fiber filter GF/C support.
Filtration fast but unsuccessful; the precipitate came
through.
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4) Support - Whatman glass fiber filter GF/B support.
Filtration fast but unsuccessful; the precipitate came
through.

5) GF/B - 10 Teflon - 4 (new) supports. Successful
filtration but slow (about 1 ml/min).

6) GF/B - supports. Filtrate appeared clear but precipitate
not clearly visible on the top filter and the GF/B filter
appeared degraded.

7) 10 Teflon - 4 supports - Teflon O-ring. Clear filtrate
at about 0. 5 ml/min.

The following tests consisted of processed soil (after water, HF/NH4 OH

treatment) filtration:

8) Same filter arrangement as (6) above. Filtration incom-
plete - very fine white precipitate came through. Unit
dismanteled following day - discovered GF/B filter per-
forated and degraded. Teflon O-ring squeezed out of
shape, filtrate chalky white.

9) 1 GF/B - 10p Teflon - 3 supports - fresh Teflon O-ring.
Filtration rate about 0. 25 ml/min for 13 milliliters, then
slowed to less than 0. 1 ml/min.

10) 1 GF/B - 3 supports. Flow fast for ~2 ml then slowed
significantly.

The following test was run on a GF/B filter which had been soaked in hot
HCI, and had hot HC1 filtered through it followed by redistilled water.
The test consisted of 30 ml 6N HC1 pushed through with pressure.

11) GF/B - 3 supports. Procedure punctured large hole in
filter.

Thus, Teflon filters performed successfully although impurities
have been a problem. Whatman glass fiber filters were unsuccessful
either because of inadequate strength or because of inadequate filtration.
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For breadboard use the following arrangements were selected as

functional, but not ideal:

Hydrolyzer:

1 perforated Teflon support - 10 Teflon filter
- 3 perforated Teflon supports.

Evaporator:

10 Teflon filter - 4 supports - Teflon O-ring.

3. 3. 3 Radiotracer Methods

Because of the problems inherent in working with extremely low
concentrations, it was felt that radiotracer tests using selected labeled
amino acids were a necessary part of the program. By combining
radiotracer tests with GC analysis, independently analyzable data was
obtained. Furthermore, the use of radiotracers allowed the separation
of amino acid recovery problems from derivatization and GC analysis
problems. It was felt to be unnecessary to carry out radiotracer studies
with all of the required amino acid types. Two standard amino acid mix-
tures were developed to accomplish radiotracer testing in an efficient
manner.

3. 3. 3. 1 Handling Techniques

Initial radiotracer work was done to establish both efficiency and
reproducibility of our laboratory procedures. A variety of transferring
and measuring devices were tested to determine the most reproducible
method of handling small quantities of radioactive solutions in conjunction
with thin layer chromatography. The microliter-syringe was the
measuring device selected as most accurate and convenient.

The scintillation cocktail selected was 12 milliliters New England
Nuclear Aquasol plus 4 milliliters 0. 1 N HC1. The amino acid, plain or
absorbed onto cellulose (in the case of thin layer chromatography), was
first dissolved in the aqueous HLc, then Aquasol was added, and the cock-
tail shaken to gel, which provided a homogeneous reproducible counting
medium.
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Two standard mixtures of labeled amino acids were established:

Mixture 1 - Glutamic acid Mixture 2 - Alanine

Lysine Leucine

Phenylalanine Valine

Proline

The first mixture provided a variety of amino acid types: acidic,
basic, aromatic, and imino. The second mixture provided three well-

behaved but volatile components. In addition, thin layer chromatographic

techniques were developed to permit the isolation of each individual

amino acid in the mixture. Thus, if unexplained losses occurred, it was

possible to identify which amino acids were lost.

These radiotracers could be added at any point in a processing

test, and could be sampled at any point.

3. 3. 3. 2 Thin Layer Chromatography

Thin Layer Chromatography was selected as a method to separate

amino acids in the radiotracer mixture when necessary to pinpoint specific

losses and to establish the purity of our radiotracer compounds.

Analtech 100-micron Avicel microcrystalline cellulose plates

were used for this work.

Identification was accomplished with autoradiography using Kodak

X-ray film (no screen), as this is non-destructive identification allowing

later scraping off of the cellulose and counting the radioactivity for

quantitative recovery information.

Initial work with glutamic acid on TRW plates showed a recovery

of about 80 percent glutamic acid from the cellulose. Cellulose added

to the three references resulted in a 1 percent decrease in counts, indi-

cating that it was not the cellulose itself that was significantly interfering

with the counts. The plates from which the cellulose squares had been

scraped were washed with H2O and 0. 1 N HC1 and the wash water was

counted to demonstrate that no significant losses occurred in the scraping

process.
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Further tests with glutamic acid spotted on cellulose were made in

order to discover a means for recovering a greater percentage of the

amino acid with the following results:

1) Adding unlabeled amino acid or 0. 1 N NaOH to the cellulose
before spotting with labeled amino acid increased the
recovery from the cellulose.

2) Solvent (i. e., HZO) was required in order to both better
dissolve the amino acid and to form a gel when Aquasol
was added, so that the cellulose and amino acid would not
all settle to the bottom of the vial. When one milliliter of
Aquasol was added to the sample of cellulose in the vial
before water had been added, a 20 to 30 percent count
reduction resulted.

In later tests with Avicel plates, reproducible measurements were

achieved, and in each sample vial a gel was formed of 4 milliliters of

aqueous solution and 12 milliliters of Aquasol. The results with all three

labeled amino acids showed good recovery from the cellulose after it was

simply spotted with the amino acid, scraped into the counting vial, dis-

solved in a solvent and made into a gel. Loss of counts was seldom

greater than 2 percent.

Included in these recovery tests was an investigation into which

solvent of three: HZO, 0. 1 N HC1, or 0. 1 N NaOH, best extracted the

amino acids from the cellulose. NaOH was not satisfactory because it

had a significant quenching effect. Both H 2 0 and HC1 gave good results,
and it was decided to use 0. 1 N HC1 in subsequent tests.

Two TLC solvent systems were tried:

1) Butanol/acetic acid/water: 60/20/20

2) Chloroform/methanol/1 7% ammonia: 40/40/20

Better separations were obtained with system 1, and it was used

for subsequent TLC work. Using pure, unlabeled amino acids, adequate

one dimensional separations were obtained for lysine, glutamic acid,
proline and phenylalanine.
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3. 3. 3. 3 Trapping Tests

Some tests of trapping techniques were carried out to evaluate

methods of trapping radiotracer labeled derivatives so as to have a

method of monitoring the derivatizer in addition to gas chromatography.

These tests were conducted by connecting traps of various types

and configurations to a heated injection port of a gas chromatograph.

With carrier gas flow in the usual range, the radiotracer labeled amino

acids were injected, and after a period of carrier gas flow, the traps

were disconnected, washed with solvent (usually toluene) and the solu-

tions counted. Various trapping temperatures used included room tem-

perature, ice bath, and liquid nitrogen temperatures. The recoveries

were not satisfactory. It appears that traps using a GC liquid phase may

be necessary to get adequate recovery although these may be difficult to

wash out.

An alternate method would be to combust the derivatives to CO 2 in a
reactor and quantitatively trap the 14CO 2 in hyamine hydroxide for

counting. One test of this concept was carried out. An old laboratory

version of the copper/firebrick organic vapor trap (OVT) used in the

Viking pyrolytic release experiment was used to oxidize the derivatives.

The OVT was used in both trapping/oxidation and straight oxidation modes.

Both He and 02 were used as carrier gases. The amount of radioactivity

collected in the hyamine hydroxide trap ranged from 20 to 80 percent, and

the results were not consistent in replicate experiments. Therefore, it

was concluded that a more efficient oxidizing unit would be required if

these experiments were to be pursued further. No further oxidation type
trapping tests were carried out.

Thus, the nominal method of evaporating the derivatives onto a GC

column and running a gas chromatogram was the only method used to

monitor the derivatizer with the exception of post mortem cell washing

to measure the amount of sample remaining in the derivatizer.

3.3.4 Reagents

In order to evaluate reagent purity status, various reagent blanks

were run with existing reagents. The intent was to place the initial
purification emphasis on those reagents which had the worst blanks. The
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ion exchange resin was the most significant contributor to GC impurity

peaks initially, but improvements were made throughout the program.

3. 3. 4. 1 Ion Exchange Resin

Ion exchange resin was cleaned according to the following

procedure: a large chromatography column with a coarse porosity glass

frit was set up with heating tape attached to a Variac. About one-half

pound Biorad AG50W X8 (200 - 400 mesh) in a slurry of 0. 1 N HC1 was

poured into the column and allowed to soak overnight. The following

reagents were then washed through at 500C as received (except Arrow-

head distilled water redistilled in glass before use): water, 2N NaOH,

water to neutrality, 4N HCl, water to neutrality, 50% glacial acetic acid,

water to neutrality. The resin was then soxhlet extracted with methanol

for 1 hour and dried under vacuum overnight.

Following initial purification the same resin was reused throughout

the program with normal processing reagent recycling between uses. It

appears that impurities occur on standing, and that recycling prior to

uses provides a cleaner sample.

At the end of the program the only major interference peak occurring

was that ascribed to trifluoroacetamide.

3. 3. 4. 2 Other Reagents

The following was the final status of reagent purification:

HC1, aqueous - Mallinckrodt Reagent diluted to constant boiling
mixture and distilled in all glass system

HC1, anhydrous - Air Products, electronic grade

Hydrofluoric acid - Baker Reagent

Ammonium hydroxide - Baker Reagent

2-butanol (racemic) - Baker grade

(+)-2-butanol (optically active) - Norse Laboratories

The 2-butanol was purified before use by decanting from
molecular sieve and distilling from 2, 4-dinitrophenylhydrazine
and sodium sulfate.

Methylene chloride - Mallinckrodt Nanograde
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Trifluoroacetic anhydride - PCR, Inc. Distilled before use in
glass system.

H 2 0 - Redistilled arrowhead distilled water in all glass system.

2-butanol/HCl - prepared in all glass system by bubbling
anhydrous HC1 through concentrated H 2 S0 4 then through butanol
protected from air by butanol plus NaOH pellets and an Aquasorb
outlet tube.

A long-term storage test was carried out on several samples of

racemic 2-butanol/HC1 to determine if interfering materials were produced

on standing (the low rate of racemization of 2-butanol/HC1 on long term

storage at room temperature was demonstrated in the previous study).

The butanol/HC1 was stored in sealed glass ampoules to prevent exposure

to air and water and thus more closely modeled storage in the flight

instrument. After 8 months, the ampoules were opened and derivatization

blanks were prepared and chromatographed. The chromatograms were not

significantly different from the ones obtained with samples for the same

butanol/HCl batch before it was sealed into the ampoules. Some peaks

were present in both sets of chromatograms since our early 2-butanol/

HCI reagent was not as well purified and produced as later reagent was.

The key point is the fact that neither the number nor the size of the peaks

significantly increased. Thus it appears that 2-butanol/HC1 is stable in

terms of interference production as well as in terms of racemization, and

it should last through a nominal 90-day mission.

3. 3. 5 Gas Chromatography

Two commercial gas chromatographs with flame ionization

detectors were used on this program: a Varian 1800 and a Varian 1527.

A mixture of 60/40 He/H 2 was used as carrier gas, plus an additional

quantity added as volume make-up at the detector.

Early in the program it had been decided on consultation with NASA/
ARC that Carbowax 20M would be used as the primary column, so our old

Carbowax 20M columns were briefly reconditioned and tested. Qualita-

tively, there did not appear to have been any degradation of the columns

during 18 months of storage without any special precautions. The resolu-

tion of diastereomeric pairs remained excellent for most of the common

amino acids, and the sensitivity was good.
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While the storage life of these columns is expected to be good, it

is important to confirm this fact prior to spacecraft usage.

Several Carbowax 20 M and Dexsil 400 columns were prepared

during the program. For the 200 foot, 0. 030-inch ID columns, 65 to 75

milligrams Carbowax was appropriate. Since the columns were generally

used for analytical purposes only, conditions (temperature programming

rate, carrier gas flow) were not optimized to establish maximum resolu-

tion per coating weight.

The Dexsil Columns were coated with 78 to 85 milligrams material.

The Dexsil columns did not have a long life under the conditions that they

were used. This is apparently caused by damage of the coating in the

column inlet by injection of large volumes of methylene chloride (50

microliters sample injections were frequently used). These Dexsil col-

umns also appeared to tail excessively with small quantities of amino

acids. Good peaks were obtained with quantities greater than 10 nanomoles

and fair to good peaks with 2.5 nanomoles. However peaks of 1 nanomole

or less are not well shaped. This effect did not occur with Carbowax 20M.

Because different results were obtained.for the ion exchange column

blank with Carbowax 20M and Dexsil 400, an attempt was made to

reactivate an old Poly A-101A column to see what results would be obtained

for a third liquid phase. However, the old column had degraded badly and

was not worth using. A fresh Poly A-101A column was prepared using a
6 6-milligrams coating which may have been slightly light. While this

column does not resolve amino acids as well as Carbowax, it is useful as

an alternative type column because impurity peaks are shifted to other

locations. The peak ascribed to trifluoroacetamide occurs beyond the

amino acid range.
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4. FLIGHT DESIGN UPDATE

4. 1 SYSTEM REQUIREMENTS AND INSTRUMENT SYSTEM DEFINITION

The Automated Wet Chemistry Instrument is required to analyze at

least three soil samples for optically active amino acids under the condi-

tions specified in NASA/ARC Specification A-16231, Revision 3, Auto-

mated Wet Chemistry Instrument for Landed Planetary Missions. A list

of mandatory and desirable amino acids the instrument shall be capable

of analyzing as well as the basic sequence for accomplishing the analyses,

including types and amounts of reagents, order of addition, and process-

ing times and temperatures are also defined in Specification A-16231.

Performance requirements such as resolution and separation of and

sensitivity to amino acids, and internal calibration requirements are

also specified in the document. Portions of the specification are

included in Table 4-1 for reference.

The processing sequence contains the following basic operations:

internal calibration, soil handling, amino acid extraction, hydrolysis,

purification, derivitization and gas chromatographic analysis. The

components necessary to perform these operations are:

* Soil distributor for soil handling

* Extractor cell for amino acid extraction

* Hydrolyzer/Evaporator cell for hydrolysis and then HC1 evaporation

e Ion exchange column for desalting

* Derivatizer cell for derivitization of the amino acids

* Gas Chromatographic Column and detector for gas
chromatographic analysis.
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Table 4-1. Analysis Requirements (From Specification
A-16231, R ev. 3)

Analysis Sequence:

Step 1. Place a 1 cubic centimeter soil sample in a chamber

Step 2. Add 10 milliliters of water.

Step 3. Heat to 165 5 0 C for 1 hour.

Step 4. Allow to cool and filter off the insoluble soil residue.

Step 5. Add 10 milliliter of 6N HC1 to the filtrate from Step 4.

Step 6. Heat solution to 1100 C for 5 hours.

Step 7. Evaporate to dryness.

NOTE: The following step is performed on the ion exchange column

prior to proceeding to Step 9. The reagent volumes for
Step 8 are given for a 5 milliliter Dowex 50H+ column.

Step 8. Place 10 ml of 4N NaCH on ion exchange column. Follow
this with 20 ml of water directly onto the ion exchange
column. Follow this with 15 ml of 6N HC1 directly onto
the ion exchange column. Follow this with 20 ml of water
directly onto the ion exchange column.

Step 9. After evaporating to dryness (Step 7), dissolve the amino
acids and residual salts in 5 milliliters of water. (It may
be necessary to heat a short time to assure solution).

Step 10. Place solution (Step 9) on strong cation exchange column
for amino acid exchange, cation and neutral organic
removal. Follow the amino acid solution immediately
with 15 milliliters of water directly onto the ion exchange
column. Follow this with 10 milliliters of 4N NH 4 OH and
start collecting the amino acids when the ammonia begins
to break through the ion exchange column. Collect only
the first 1 to 2 milliliters.

Step 11. Evaporate the amino acid solution to dryness at 100 0 C

Step 12. To the dried sample add 0.5 milliliter of (+) 2-butanol
containing sufficient anhydrous HC1 to make it 4N.

Step 13. Heat solution to 100 0 C in a closed chamber for 2 hours.

Step 14. Evaporate to dryness. Cool to below 35 0 C.

Step 15. To the dried sample add 0. 1 milliliter of trifluoracetic
anhydride and 0.4 milliliter of methylene chloride. Heat
in a closed chamber for 1 hour at 35 to 40 0 C.

Step 16. Evaporate the solvents at a temperature below 100 C.
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Table 4-1. Analysis Requirements (From Specification
A-16231, Rev. 3) (Continued)

Step 17. The resultant sample is analyzed for composition by gas
chromatography.

Sample Size - The size of the soil sample shall be between I and
10 cubic centimeters.

Gas Chromatography - The analysis shall be performed meeting the
following conditions:

Carrier Gas - TBD

Columns - The column(s) shall be capable of separating the amino
acids listed below. All of the amino acids on both the mandatory
and goal lists must be identifiable by retention time. The instru-
ment is required to work only for the mandatory list. The goal list
is both a goal and to identify the most probable compounds that might
also be present and require some identification.

Mandatory Detectable Amino Acids Design Goal Detectable Amino Acids

1. Alanine 1. Ornithine

2. Valine 2. F - Amino Caproic Acid*

3. Isoleucine 3. 6 - Amino Valeric Acid*

4. Leucine 4. Y - Amino Butyric Acid*

5. Glycine* 5. a - Amino Adipic Acid

6. Proline 6. Alloisoleucine

7. Aspartic Acid 7. P- Amino- -Butyric

8. Methionine 8. P - Amino - Isobutyric

9. Phenylalanine 9. N- Methyl-alanine

10. Glutamic Acid 10. Isovaline

11. Beta alanine*

12. Norvaline

13. Norleucine

14. a - Amino- n -Butyric

15. Lysine

16. Pipecolic acid

17. a - Amino isobutyric*

*Denotes that the amino acid is not optically active.
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Table 4-1. Analysis Requirements (From Specification
A-16231, Rev. 3) (Continued)

GC Peak Resolution and Separation. Definitions: Resolution is used

to denote the separation of the diastereomeric peaks of a single racemic

amino acid and is to be determined according to R. Kaiser, Gas Chroma-

tography Vol. 1, p. 39 (1963) Butterworth, Washington. Separation is

used to denote the separation of a diastereomeric pair of one amino acid

from the diastereomeric pair of another amino acid.

The resolution of the peaks of a single racemic amino acid shall be

90 percent or better for all optically active amino acids on the mandatory

and goal lists except for aspartic acid (40 percent) lysine and ornithine

(65 percent), p-amino-isobutyric (TBD), Isovaline, N-methyl-alanine,

and p-amino-Ti-butyric (0 percent). This resolution is to be obtained for

amino acid concentrations up to 50 nanomoles per amino acid. For con-

centrations above 50 nanomoles, the resolution may be degraded.

The separation of a mixture of the racemic mandatory amino acids

shall be such that of these acids all will be separated with resolution

being no less than 50 percent in any conflict. Such conflicts shall not

involve more than three of the amino acids on the mandatory list. The

goal shall be 100 percent separation of all acids on the mandatory list.

Column Temperature. The temperature programming and readout

accuracy shall be ±0.50C.

Column Retention Time. The retention time precision for each

amino acid shall be within 0. 50 C of its retention time.

Detector. The overall sensitivity (total scheme, sensitivity at

detector output after data processing) shall be such that 0. 1 nanomoles

and less than 50 nanomoles of each of the amino acids on the mandatory

list in Table 4-1 can be detected in the soil sample. It is a design goal

that 0.01 nanomole or less of each of the amino acids in a soil sample be

detected.

Detector Dynamic Range. The detector dynamic range shall be six

decades. The peak area accuracy for each decade of peak height (con-

centration) shall be 1 percent.

Internal Calibration. A mixture of two (TBS) racemic amino acids

or peptides shall be carried in the instrument for calibration of the experi:

ment system for each of the processed soil samples. The (TBS) racemic

amino acids or peptides shall be placed in each hydrolysis chamber with

the soil sample prior to the addition of HC1.
4-4



Additional components necessary to implement the functions in an

automated system are:

* Reagent storage containers and injection systems

* Gas supply subsystems

* Interconnecting plumbing and valves

* Electronic subsystem.

A system block diagram of the basic system components, including

summaries of the process operations performed with each component, is

presented in Figure 4-1. A complete instrument system schematic is

shown in Figure 4-2. A short description of the system is presented in

the following paragraphs, which also point out differences to the previous

flight design (TRW Final Report No. 16660-6001-RO-00).

A major difference is the use of only one set of reusable processing

cells as compared to three sets of separate, non-reusable cells in the

previous design. The soil metering and distribution subsystem which is

based on the VLBI soil distributor receives soil from the Lander soil

processor via the soil feed tube, meters out a fixed volume of the soil

sample and deposits the sample in the extractor after removal of the top

cover of the extractor. Leftover soil is deposited in a dump cell. The

soil distributor can deliver at least three soil samples of identical size

to the extractor. The extractor cover is held in place by a gas actuated

piston and return spring. The spring holds the cover closed and gas

pressure on the actuator raises it. Actuation is provided by a solenoid

valve.

A set of processing cells which can be used repeatedly is provided

for preparing the sample for gas chromatographic analysis. The set con-

sists of the extractor, hydrolyzer/evaporator, ion exchange column and

derivatizer, and the associated plumbing and valves. In the previous

process hydrolysis was carried out directly on the soil, so the first cell

was the hydrolyzer. The hydrolysate was transferred into the second

cell, the evaporator, for HC1 evaporation and a subsequent desalting pro-

cess. The following steps in the previous process are the same as in the

current baseline process.

The extractor, hydrolyzer/evaporator and ion exchange column each

contain filters at their outlets. It might be possible to eliminate the filter

in the hydrolyzer/evaporator which would remove one possible source of
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SOIL FEED TUBE

RECEIVE SOIL FROM LANDER

METER 1 CC SAMPLE

SOIL DISTRIBUTION SOIL OPEN SOILVALVE AT CELL SOIL INLET PORT
ASSEMBLY HANDLING TRANSFER 1 CC SAMPLE TO EXTRACTOR CELL

SOIL "DEPOSIT EXCESS SOIL IN DUMP RECEPTACLE
VALVE CLOSE SOIL VALVE

INJECT 10 ML OF H2 0 AND CALIBRATION AMINO ACIDS

EXTRACTOR EXTRACTION HEAT TO 165+5*C FOR ONE HOUR

ALLOW TO COOL AND FILTER INTO HYDROLYZER

VALVE
r-/H H20,6N HCI

He/H2 -- 4N NH4 OH

VALVE

VENT-

RECEIVE FILTRATE

HYDROLYZER/ ADD 10 ML OF6N HCL

EVAPORATOR HYDROLYSIS HEAT AT 110.t5*C FOR FIVE HOURS

EVAPORATE TO DRYNESS

DISSOLVE THE RESIDUE IN 5 ML OF H2 0

VALVE

H2 0 ,6N HCI, 4N NH4 OH,
LIQUID 2 N NaOH
SENSOR

FILTER THE SOLUTION AND PASS THE FILTRATE

THROUGH THE ION EXCHANGE COLUMN AND VENT

ION ION WASH THE ION EXCHANGE COLUMN DIRECTLY WITH

EXCHANGE EXCHANGE 15 ML OF H2 0 AND VENT
COLUMN FOLLOW DIRECTLY WITH 10 ML OF 4N NH 4OH THROUGH

THE COLUMN

VENT COLLECT THE FIRST 1 TO 2 ML OF COLUMN EFFLUENT

VALVE He/H 22 BUTANO/HCI, TFAA/MC CONTAINING AMINO ACIDS
EVAPORATE THE ION EXCHANGE COLUMN EFFLUENT TO DRYNESS

VALVE INJECT 0.5 ML OF 2-BUTANOL/HCL (4N)
VENT HEAT TO 100*C FOR 2 HOURS

DERIVATIZATION EVAPORATE THE SOLUTION TO DRYNESS

COOL TO BELOW 35
0
C

DERIVATIZER INJECT 0.2 ML OF TRIFLUOROACETIC ANHYDRIDE AND

0.
4 

ML OF METHYLENE CHLORIDE

HEAT TO 35-40*C FOR ONE HOUR

VALVE .4 EVAPORATE THE SOLVENTS AT A TEMPERATURE BELOW

10C (THROUGH THE VENT)

He/H 2  02
HEAT THE SAMPLE TO 150*C AND INJECT INTO THE GAS

GAS GAS CHROMATOGRAPHIC COLUMN

CHROMGATORAPH FLAME CHROMATOGRAPHIC TEMPERATURE PROGRAM THE GAS CHROMATOGRAPHIC COLUMN
COLUMN i IONIZATION FROM 25

0
C TO 200

0
C

DETECTOR DETECT AMINO ACIDS

VENT

Figure 4-1. Wet Chemistry System Block Diagram
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contamination. The extractor, hydrolyzer/ evaporator, ion exchange

column, and derivatizer are equipped with heaters to maintain the required

temperature environment. The derivatizer, in addition, is connected via

a heatpipe to a thermoelectric cooler to maintain the cell temperature

below 100C during evaporation of solvents after amino acid derivitization.

The ion exchange column has gas actuated isolation valves at inlet and

outlet to preclude drying of the resin during interplanetary cruise.

The instrument contains a single capillary tube self-heated gas

chromatographic column which is used, in the baseline configuration,
in conjunction with a flame ionization detector. The use of a state-of-the-

art electron capture detector or the addition of a mass spectrometer is

also under consideration. The stainless steel column is used as a

resistance element heater and is designed to provide uniform column

temperatures during steady state and programmed temperature control.

Active temperature control is maintained by sensing the change in column

electrical resistance as the column is heated. The column inlet and out-
let are close coupled to the derivatizer outlet and detector, respectively.

The amino acids are injected directly into the column from the derivatizer.

Cold trapping of amino acid derivatives is provided by the column liquid
phase.

The baseline instrument contains a single flame ionization detector.

The detector has inlets for the He/H 2 carrier gas from the gas chroma-
tographic column, makeup He/H 2 gas, and 02 gas. A single outlet is
provided with a gas actuated valve and flow restrictor. The detector has
a separate heater and temperature sensor to maintain the detector tem-
perature at a constant value, slightly above the maximum programmed

gas chromatographic column temperature.

Two gas supplies are used in the instrument. One provides oxygen
for the flame ionization detector. For long term storage, the oxygen

supply is isolated by a thermally actuated isolation valve which is actuated
at the start of the experiment. A control valve is used to turn the gaseous
oxygen on and off as required.

A second gas supply contains a mixture of helium and hydrogen

(approximately 44 percent H 2 by volume). This system has three branches.
The first branch is connected downstream bf the first pressure regulator
(approximately 165 psia) and is used to pressurize the gas actuated isola-
tion valves on all reagent containers and on the ion exchange column. It
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will also be used for all gas actuated tantalum diaphragm valves (control

valves) in the instrument, and for the gas actuated extractor cover. The

other two branches are connected downstream of the second stage regula-

tor (18 psia); one branch supplies carrier gas through the gas chromato-

graphic column and then through the flame ionization detector. Gas from

each of these branches is controlled by a separate valve. Low pressure

gas is also used for pressurization of the various cells, for purging and

gas drying, and for fluid routing and reagent injection. The gas supply

is sealed with a thermally actuated isolation valve for long term storage.

Identical reagent storage containers and injectors are used in the

current design. The reagents are stored in compatible metallic containers

and a gas actuated isolation valve is used to seal the container for long

term storage. After actuation the flow of the reagent is maintained by

the low pressure He/H 2 gas, and the amount of reagent delivered to the

cell is determined by the open time of the control valve of the outlet.

Because of shelf life limitations, the 2-butanol and anhydrous HC1

are stored separately. The anhydrous HC1 is stored in a small pressure

vessel at approximately 900 psi. Ten percent of this volume contains

helium gas. The 2-butanol is stored in a separate container under its own

vapor pressure. The two vessels are isolated from each other and from

the rest of the system by gas actuated isolation valves. Upon actuation

of the valve between the two vessels, the HC1 gas and 2-butanol in the

adjacent reservoir are allowed to react. The inert helium is used as the

driving pressure (blowdown mode) for reagent injection. Injection is

accomplished by first opening the gas actuated isolation valve downstream

of the 2-butanol reservoir and then opening the control valve for a pre-

determined time to meter the mixture to the derivatizer.

Since this injector operates in a blowdown mode, the time required

to inject equal volumes into the derivatizer in subsequent analysis seq-

uences will vary with successive injections. This characteristic is

repeatable and can be accommodated in the electronics by changing the

valve open time for each application.

The instrument contains two vent systems internal to the package

(as compared to three previously). These are connected to a single out-

let vent for interfacing with the Lander. A common vent manifold is used
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for the extractor, hydrolyzer/ evaporator, derivatizer, and ion exchange

column. Valves at the outlets of these cells prevent backflow and cross

contamination between cells. The second vent system is used on the outlet

of the gas chromatographic column and flame ionization detector and for

the two gas supply systems.

Control and routing of reagents, gases and samples are accomplished

with a fluid system consisting of small diameter tubing and gas actuated

control and isolation valves. The plumbing system is designed to contain

a minimum number of valves and to prevent cross contamination between

various cells. Two and three way solenoid valves, most thermally actu-

ated isolation valves and (passive) check valves incorporated in the pre-

vious design have been eliminated and/or replaced.

The electronic subsystem provides the regulated power, instrument

control functions and data processing. This subsystem receives, decodes

and distributes commands from the Lander.

4. 1. 1 Instrument Analysis Capabilities

The following paragraphs contain discussions on the analysis capa-

bilities of the instrument as compared to the specification requirements

for Process No. 2. The items covered are soil sample size, carrier gas

composition, number of amino acids detectable, gas chromatographic

column resolution and separation, column temperature control, column

retention time, overall system sensitivity and detector dynamic range,

peak area integration accuracy, optically active resolving agent, and

internal calibration. A summary of the specification requirements is

included in Table 4-1.

We believe the instrument is capable of satisfying the specification

requirements.

The separation and resolution of all of the amino acids on the manda-

tory list have not yet been demonstrated but columns are available which

should provide adequate separation and resolution. While the detector

sensitivity is better than required, the overall sensitivity is determined

by interference, and further reduction of the amount of interference is
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needed to obtain sensitivities below 1 nanomole. It is felt that the inter-

ference can be reduced sufficiently to reach the 0. 1 nanomole requirement.

4. 1. 1. 1 Soil Sample Size

The soil distribution subsystem meters soil volumetrically. A

metering cavity size of 1.0 cubic centimeter was selected for the instru-

ment design. Based upon the Viking Program Mars Engineering Model,

the density of Martian soil varies from 1. 0 g/cm 3 (Loess) to 3. 2 g/cm 3

(rock). For design purposes, a soil density of 1. 5 g/cm 3 was selected

and the reagent injector volumes were sized accordingly.

For a given system detection sensitivity, increasing the soil sample

size will provide some increase in the capability to analyze lower amino

acid concentrations. This is not necessarily a linear relationship for all

of the amino acids because the amount of interfering species may also

increase. From this standpoint, the optimum soil sample size has not

been determined.

Using the analytical sequence of Process No. 2, increasing the soil

sample size has the following impact on the system. The H 2 0O volume for

extraction probably would increase linearly with soil sample size as would

the amount of HC1 solution required for hydrolysis.

Some increase in ion exchange resin volume would be required.

The volume of the reagents associated with the ion exchange column

would increase linearly with resin volume.

4. 1. 1. 2 Carrier Gas

The specification requirement for the carrier gas is to be deter-

mined. The instrument, as currently designed, uses a mixture of helium

and hydrogen (56 percent He, 44 percent H 2 ). The helium and hydrogen

gases are mixed together and stored in a single tank and are used for

pressurization, mixing, purging, gas chromatographic column carrier

gas and flame ionization detector operation. The reason for combining

the gases was to minimize the number of gas supply subsystems. Labora-
tory tests continue to verify the validity of this approach.

Other carrier gases could be used if a different detector type were
desired, or if the experiment was operated in conjunction with a mass
spectrometer.

4-11



4. 1. 1.3 Column Performance

Identification. The requirements for amino acid identification by

retention time and for retention time precision can be satisfied with the

columns evaluated.

The retention time precision for each amino acid is required to be

within 0. 5 percent. Normally, variations in the column temperature pro-

file are the most significant variable affecting retention time. However,

in this instrument, the column temperature profile is closely controlled

(within ±0. 50 C) and should not be a large source of retention time

variation.

The other significant variable with respect to the retention time in

this instrument is the carrier gas flow rate. The current design uses a

carrier gas supply system which is basically the same as that used for

Viking Lander Biology Instrument. With this system the flow can vary

as much as 2. 2 percent because of variations in regulator pressure. The

effect of flow rate on retention time depends on column operating param-

eters. At constant temperature, the retention time varies approximately

as the square root of the flow rate (i. e., 2. 2 percent flow variation equi-

valent to a 1. 1 percent variation in retention time). For a column which

is temperature programmed, the effect of flow variations on retention

time is reduced. Thus, 2. 2 percent flow variation will result in a signi-

ficantly smaller variation in retention time. Furthermore, some of the

pressure variation is caused by temperature changes at the regulator.

These effects can be corrected for in the returned data by use of tempera-

ture measurements and the calibration of the regulator pressure/

temperature dependence. If further development testing shows that the

fluctuation of retention time is greater than desired, additional flow control

is feasible.

The nature of the column can also affect the retention time precision

because of aging effects. The retention times obtained for a given column

varies over the life of the column. However, the effect over several

operating cycles is small as long as the column is not near the end of its

life. Retention time precision of 0. 5 percent is achieved in the laboratory

if care is taken to maintain reproducible operating conditions.
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Resolution and Separation. General column testing was, not carried

out as a part of this program and all of the amino acids in the new manda-

tory list were not run. Based on column tests in the previous program and

on results from NASA/ARC, columns are available which can meet most

if not all resolution and separation requirements of the specification.

However, it is recognized that the possibility that the column most suited

to the overall mission goals might not meet the separation and resolution

requirements in their entirety. Selection of the GC column to be used in

the instrument should await further instrument development.

Column Temperature. The temperature programming will be con-

trolled so that at any time, the actual temperature will be within ±0. 50 C.

of the nominal temperature for that point on the time-temperature profile.

The temperature readout will provide the requirement ±0. 50C accuracy.

4.1.1.4 Detector

Sensitivity. The overall sensitivity requirement for the total instru-

ment after data processing is that between 0. 1 and 50 nanomoles of each

of the amino acids on the mandatory list can be detected. The design goal

is to be able to detect 0. 01 nanomole or less of each amino acid in the soil

sample. Laboratory studies indicate that the gas chromatographic column

detector system is capable of providing the required sensitivity. Based on

the data obtained with a conventional laboratory gas chromatograph from

samples in the 2 nanomole range and extrapolating a 2:1 signal-to-noise

ratio for an amino acid 100 percent in one enantiomer, 0. 005 to 0. 05 nano-

mole of the mandatory amino acids should be detectable (in the absence of

conflicts) depending on the column, column operating conditions and the

particular amino acid.

The major uncertainties in estimating the total overall sensitivity

lies in the recovery of the amino acids in the soil, and in the amount of

interferences present in the gas chromatogram. The recovery is influenced

by the extraction efficiency, the amount of amino acid breakdown during

hydrolysis, losses during ion exchange desalting, and the derivatization

efficiency. The extraction efficiency depends upon the nature of the soil

sample and the degree of polymerization of the amino acids. Extraction

efficiency is high for abiologic samples, but for life derived samples, the

efficiency may be lower. Based on breadboard test results extrapolated
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to Process No. 2, the recovery in the rest of the processing is expected

to be high (85 to 90 percent) and the derivatization efficiency is expected

to be good (85 to 90 percent average). Based on NASA/ARC information,

the extraction efficiency should be adequate so that less than 0. 1 nanomole

can be detected.

The sensitivity with the current breadboard with Process No. 1 is

limited by the presence of interferences in the gas chromatogram. The

change to process should lead to the reduction or elimination of most of

the interference problems. Known solutions are available for the remain-

ing interference problems. Thus, it is felt that the 0. 1 nanomole require-

ment can be satisfied.

Dynamic Range. The dynamic range requirement for the detector

is six decades. One percent area integration accuracy must be maintained

in each decade over this entire range. This requirement means, first,

that the detector must handle signals over this range with reasonable

linearity, and its operating parameters must be adequately controlled.

The suitability of the ATC HYFID design for this requirement has been

demonstrated by its incorporation in an organic analysis system covering

seven decades of linear range (NASA/ARC Contract NAS 2-5469).

Secondly, the detector electrometer must be range-switched to

prevent overload and guarantee correct utilization of the analog/digital

(A/D) converter to maintain the 1 percent area integration accuracy in

each decade of range. (For example, a 10-bit A/D converter has a

resolution of only one part in 1024 and cannot be used to cover the entire

six decades of range.) Low level:-signal conditioning, A/D conversion

and data formatting are discussed in Section 4.4. 7.

Accuracy. The entire chromatogram will be sent back in a manner

basically identical to that used to send back the entire chromatogram from

the gas exchange experiment of the Viking Lander Biology Instrument.

The concepts involved in reconstruction of the chromatogram were dis-

cussed in the final report on the previous program (NASA/ARC Con-

tract NAS 2-6218). These concepts have been proven by reconstruction

of actual digitalized chromatograms from VLBI development instruments.
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The basic difference between the wet chemistry and the VLBI chromatograms

is the greater dynamic range with the wet chemistry instrument which will

require additional range switching before the A/D converter, and the

increased length of the chromatogram. There is also a greater variability

in peak shapes in the wet chemistry instrument if column overloading

occurs, and some column bleed is present at the upper end of the tempera-

ture program. However, the analysis of these factors performed in the

previous program indicates that the reconstruction process is not signi-

ficantly affected. Thus the entire chromatogram will be available with

better than 1 percent accuracy, and hence the best ground based integra-

tion methods can be applied to the reconstructed chromatogram which

should allow peak area accuracy to be better than the specified 1 percent.

4. 1. 1.5 Optically Active Resolving Agent

The (+) 2-butanol shall consist of 90/10 ratio of the enantiomorphic

pairs as specified. In order to preserve the optical purity of the 2-butanol

during terminal sterilization and storage, the 2-butanol/HC1 reagent will

be made after landing from 2-butanol and anhydrous HC1.

4.1.1.6 Internal Calibration

A mixture of two racemic amino acids or peptides are to be included

in the instrument for calibration. They will be added as an aqueous solu-

tion to the extractor after loading of soil and before the start of the

extraction.

4. 1.2 Operating Sequence

A step-by-step operating sequence has been developed for the instru-

ment system. This sequence contains the basic functions for analysis of a

single soil sample. Additional functions are required to open the isolation

valves for the gas supplies and H 2 0, NH 4 0H and 2-butanol/HCl injectors

the first time the instrument is operated.

The operating sequence is described in the following paragraphs.

This sequence is for a Lander thermal plate temperature of -15 0 F. The

sequence will vary slightly as a function of Lander plate temperature

because of differences in heat-up and cool-down times. The -15 0 F condi-

tion is a worst case from a power standpoint (longer heat-up times, higher
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thermal losses). Table 4-2 contains a listing of the sequence steps, the

operating time requirements for each step, and valve and heater actuation

requirements.

The following paragraphs describe the processing steps listed in

Table 4-2.

1) Activate Instrument

An initiation sequence is performed prior to the first analysis
to actuate the thermal isolation valves for the gas supply sys-
tems: He/H 2 (TIV-1) and 02 (TIV-2). Line heaters H-12 and
H13 and the He/H2 supply heater, H-15 are also turned on at
this time.

2) Receive Soil from Lander

Operation of the instrument begins on receipt of the initiate
command and electrical power from the Lander. This com-
mand is to be generated after the Lander has deposited the
soil sample into the instrument soil feed tube. (Any mechan-
ical processing, such as crushing of soil, is carried out by
the Lander.) The command starts the automatic sequence for
processing the first sample through processing cells.

3) Transfer Soil Sample into Extractor

Soil from the Lander soil processor is transferred through
the soil feed tube into the soil distributor assembly where it
is metered and dumped into the extractor. This operation is
described in more detail in Section 4. 3. 1.

4) Heat Extractor

To prepare the sample for processing, the extractor is
heated to 100C. Since the minimum specification tempera-
ture of -320C (-25 0 F) could cause freezing of any of the
reagent solution to be injected into the processing cells, all
reagent containers are heated in preparation for the next
step at this time by turning on heaters H-7 through H-11.

5) Open Gas Actuated Isolation Valves

To prevent loss or contamination prior to launch and in flight,
all reagents are stored in sealed containers, which are
opened prior to use with high pressure He/H 2 by opening S-1
and S-2 to operate the gas actuated isolation valves on the
reagent containers. After the isolation valves have been
opened, excess gas pressure is vented through S-34. The
injectors are heated during this process so the reagents will
be liquid when the disks are punctured.
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Event No. Event and Steps Time To Elapsed Valves Heaters
Event No. Event and Steps Next Step Time

i. Activate Instrument

a. Apply operate power 1 1

b. Turn on gas supply heaters 15 2 H-15 (on)

c. Activate thermal isolation 5 17 TIV-1,TIV-2
valves

2. Receive soil from Lander

a. Deposit soil sample into feed 1 22
tube

b. Start automatic sequence 1 23

3. Transfer soil sample to extractor

a. Open high pressure He/H 2  1 24 Op S-1
supply valve

b. Open soil valve 1 25 Op S-3

c. Drive distribution motor 1 26

d. Deposit sample into extractor 1 27

e. Reverse drive motor 1 28

f. Close high pressure He/H2  1 29 Cl S-1
supply valve

g. Open high pressure He/H2 line 1 30 Op S-34
vent valve

h. Close soil valve 1 31 C1 S-3

i. Close high pressure He/H2 line 1 32 Cl S-34
vent valve

4. Warm extractor

a. Turn on extractor, line and - 33 H-12, 7 thru 11
reagent heaters (ON)

b. Heat extractor to 10 *C and 15 33 H-1 (10)
maintain

5. Open gas actuated isolation valves

a. Open high pressure He/H 2 supply 1 48 Op S-1
valve

b. Open actuation valve 1 49 Op S-2

c. Close high pressure He/H 2 supply 1 50 C1 S-1
valve

d. Open He/H 2 vent valve 1 51 Op S-34

e. Close Actuation Valve 1 52 Cl S-2

f. Close He/H vent valve, turn off 1 53 C1 S-34 H-8,10,11 (OFF)

reagent injector heaters

6. Inject standard amino acids into
extractor

a. Open amino acid injector
pressurization valve 2 54 OP S-17

b. Close amino acid injector 1 56 Cl 5-17
pressurization valve

c. Open amino acid injection valve 1 57 Op S-18

d. Open extractor valve 1 58 Op S-4

e. Close amino acid injection valve, 1 59 Cl S-18 H-7 (OFF)
turn off injector heater

f. Close extractor valve 1 60 C1 S-4

g. Open line'vent lalve 1 61 OP S-5

h. Close line yent yvalye 1 62 CL 8-5

7. Inject H20 into. extractor

a. Open H20 injector pressurization 2 63 OP S-21
valve

b. Close H20 injector pressurization 1 65 C1 S-21
valve

c. Open H20 injection valve 1 66 Op S-22

d. Open extractor valve 9 67 Op S-4

e. Close H20 injection valve 1 76 Cl S-22

f. Close extractor valve 1 78 Cl S-4

8. Clean Line

a. Open line vent valve 1 79 Op S-5

b. Close line vent valve 1 80 C1 S-5

c. Open H20 injection valve 1 81 Op S-22

d. Open line vent valve 1 82 Op S-5

_ __ _._ Clnose HRin.j ectton vlve 1 83 _CLS=Z 2_

f. Open low pressure He/H 2 supply 1 84 Op S-27
valve

g. Close low pressure He/H2 supply 1 85 C1 S-27
valve

h. Repeat steps b through g four times 24 86

i. Close line vent valve, turn off line, 1 110 C1 5-5 H-9,12,15 (OFF)

H20 injector and gas supply

.a Carry Out Extraction

a. Change extractor heater set point - 111 H- (165)

b. Heat extractor to 165 +5
0
C and main- 90 111

tain

c. Change extractor heater set point - 201 H-1 (10)

d. Allow extractor to cool below 50
0
C 30 201

N
10. Transfer Extract to Hydrolyzer/Evaporator

a. Turn on hydrolyzer/evaporator, line, - 231 H-2 (20), H-15,

and gas supply heaters 12 (ON) -

b. Heat hydrolyzer/evaporator to 10
0
C 15 231

and maintain O

c. Open hydrolyzer/evaporator inlet 1 246 OP S-6 ID
valve '

d. Open line vent valve 1 247 OP S-5

e. Close line vent valve 1 248 CL S-5

f. Open extractor valve 5 249 OP S-4

g. Open hydrolyzer/evaporator vent 1 254 OP S-7 H-8 (ON)
a valve, turn on HC1 injector heater P

a h. Close hydrolyzer/evaporator vent 1 255 CL S-7
valve

i. Close hydrolyzer/evaporator inlet 1 256 CL S-6
valve

j. Open low pressure He/H 2 supply valve 2 257 OP S-27

k. Close low pressure He/H2 supply valve 1 259 CL 5-27

i. Open hydrolyzer/evaporator inlet 5 260 OP S-6
valve

m. Open hydrolyzer/evaporator vent valve 1 265 OP S-7

n. Close extractor valve 1 266 CL S-4

o. Close hydrolyzer/evaporator vent 1 267 CL S-7
valve

p. Turn off extractor heater 1 268 H-1 (OFF)



11. Inject HCI Solution Into Hydrolyzer/Extractor

a. Open HC injector pressurization 2 269 OP S-19

valve

b. Close HCl injector pressurization 1 271 CL S-19

valve -

c. Open HC1 injection valve 10 272 OP S-20

d. Close HC1 injection valve, turn 1 282 CL S-20 H-8 (OFF)

off injector heater

e. Close hydrolyzer/evaporator inlet 1 283 CL S-6

valve

12. Start Hydrolysis

a. Change hydrolyzer/extractor set point - 284 H-2 (110
0

C)

b. Heat hydrolyzer/extractor to 110
0
C 5 284

and maintain for.5 hours

c. Turn on H20 injector heater 15 289 H-9 (ON)

13. Clean Line

a. Open line vent valve 1 304

b. Close line vent valve 1 305

c. Open H20 injection valve 1 306

d. Open line vent valve 1 307

e. Close H20 injection valve 1 308

f. Open low pressure He/H2 supply valve 1 309

g. Close low pressure He/H supply 1 310 H-13, 14, 11

valve, turn on line and-NaOH (ON)

injector heaters

h. Repeat steps b through g four times 24 311

i. Close line vent valve 1 335

14. Pre-elute Ion Exchange Column

a. Open NaOH injector pressurization 2 336 OP S-25

valve

b. Close NaOH injector pressurization 1 338 CL S-25

valve

c. Open NaOH injection valve 1 339 OP S-26

d. Open line vent valve 1 340 OP S-10

e. Open IEC outlet valve 20 341 OP S-9

f. Close IEC outlet valve 1 361 CL S-9

g. Close NaOH injection valve, turn 1 362 CL S-26 H-11 (OFF)

off injector heater

15. Wash Ion Exchange Column

a. Open H20 injector pressurization 2 363 OP S-21

valve

b. Close H20 injector pressurization 1 365 CL S-21

valve

c. Open H20 injection valve 1 366 OP S-22

d. Open line interconnect valve 1 367 OP S-28

e. Open IEC outlet valve 17 368 OP S-9

f. Turn on HC1 injector heater 13 385 H-8 (ON)

g. Close IEC outlet valve 1 398 CL S-9

h. Close H20 injection valve 1 399 CL S-22

16. Regenerate Ion Exchange Column

a. Open HC1 injector pressurization 2 400 OP S-19
valve

b. Close HCl injector pressurization 1 402 CL S-19
valve

c. Open HCl injection valve 1 403 OP S-20

d. Open IEC outlet valve 30 404 OP S-9

e. Close IEC outlet valve 1 434 CL S-9

f. Close HCl injection valve, turn off 1 435 CL S-20 H-8 (OFF)
HCl injector heater

g. Close line interconnect valve 1 436 CL S-28

h. Open line vent valve 1 437 OP S-5

i. Open low pressure He/H2 supply valve 1 438 OP S-27

j. Close low pressure He/H2 supply valve 1 439 CL S-27

.-_ -CI-6se line vent valve 0 CL -5

17. Wash Ion Exchange Column

a. Open 120 injector pressurization 2 441 OP S-21
valve

b. Close H20 injector pressurization 1 443 CL S-21
valve

c. Open H20 injection valve 1 444 OP S-22

d. Open line interconnect valve 1 445 OP S-28

e. Open IEC outlet valve 40 446 OP S-9

f. Close IEC outlet valve 1 486 CL S-9

g. Close line interconnect valve 1 487 CL S-28

h. Close HO20 injection valve, turn 1 488 CL S-22 H-9 (OFF)
off H20injector heater

i. Close line vent valve 1 489 CL S-10

j. Open line vent valve 10 490 OP S-5 .

k. Open low pressure He/H2 supply 10 500 OP S-27
valve 2

rO
i. Close low pressure He/H 2 supply 1 510 CL S-27

valve

m. Close line vent valve, turn off line 93 511 CL S-5 H-12,13,14,15
o and gas supply heaters (OFF) - ca

18. End Hydrolysis, Evaporate HC1 Solution

a. Change hydrolyzer/evaporator heater - 604 H-2 (20)
set point

b. Allow hydrolyzer/evaporator to cool 30 604
below 50 0C

c. Open hydrolyzer/evaporator vent 1 634 OP S-7
valve

d. Change hydrolyzer/evaporator - 635 H-2 (110)
heater set point It"

e. Heat hydrolyzer/evaporator to 110
0
C 200 635

and maintain r 0)

f. Change hydrolyzer/evaporator 1 835 H-2 (50)
heater set point

g. Close hydrolyzer/evaporator ventvalve 15 836 CL S-7

h. Allow hydrolyzer/evaporator to cool - 836
to 50

0
C

i. Turn on gas supply, line and H20 14 851 H-9,12,15 (ON)
injector heaters



19. Dissolve Amino Acids and Residual Salts

a. Open H20 injector pressurization 2 865 OP S-21

valve

b. Close H20 injector pressurization 1 867 CL S-21

valve 1

c. Open hydrolyzer/evaporator vent valve 1 868 OP 5-7

d. Close hydrolyzer/evaporator vent 1 869 CL S-7
valve

e. Open hydrolyzer/evaporator inlet 1 870 OP S-6

valve

f. Open H20 injection valve 5 871 OP S-22

g. Close H20 injection valve, turn off 1 876 CL S-22 H-9 (OFF)

H20 injector heater

20. Mix by Gas Bubbling

a. Open low pressure He/H 2 supply valve 1 877 OP S-27

b. Close hydrolyzer/evaporator inlet 0.1 CL S-6

valve

c. Open hydrolyzer/evaporator vent 0.1 OP S-7

valve

d. Close hydrolyzer/evaporator vent 0.1 CL S-7

valve

e. Open hydrolyzer/evaporator inlet 0.1 OP S-6

valve

f. Repeat steps b through e, nine times 4

g. Close hydrolyzer/evaporator inlet 1 881 CL S-6 H-13,14 (ON)

valve, turn on line heaters

h. Change hydrolyzerJevaporator heater - 882 H-2 (20)

set point

i. Allow hydrolzyer/evaporator to cool 30 882
to 20-25

0
C

21. Place Solution on Ion Exchange Column

a. Open hydrolyzer/evaporator inlet 1 912 OP S-6

valve

b. Open hydrolyzer/evaporator outlet 1 913 OP S-8

valve

c. Open line vent valve 1 914 OP S-10

d. Open IEC outlet valve, turn on H20 - 915 OP S-9 H-9 (ON)

injector heater

e. Activate liquid level sensor 10 915

f. Close hydrolyzer/evaporator and 1 925 CL S-8, S-9

IEC outlet valves (by LLS or by time)

g. Close hydrolyzer/evaporator inlet 1 926 CL-6

valve

h. Turn hydrolyzer/evaporator heater off 1 927 H-2 (OFF)

i. Open line vent valve 2 928 OP S-5

J. Close low pressure He/H 2 supply valve 1 930 CL S-7

k. Close line vent valve 1 931 CL S-5

22. Wash IEC

a. Open H20 injector pressurization 2 932 OP S-21

valve

b. Close H20 injector pressurization 1 934 CL S-21

valve

c. Open H20 injection valve 1 935 OP S-22

d. Open line interconnect valve 1 936 OP S-28

e. Open IEC outlet valve 18 937 OP S-9

f. Turn on NH40H injector heater 12 955 H-10 (ON)

g. Close IEC outlet valve 1 967 CL S-9

h. Close H20 injection valve, turn off 1 968 CL S-22 H-9 (OFF)

H20 injector heater

23. Elute Ion Exchange Column

a. Turn on derivatizer heater - 969 H-4 (10)

b. Heat derivatizer to 100C and maintain 1 969

(in parallel with subsequent steps)

c. Open NH OH injector pressurization 2 970 OP S-23
valve

d. Close NH40H injector pressurization 1 972 CL S-23
valve

e. Close line interconnect valve 1 973 CL S-28

f. Open line vent valve 5 974 OP S-5

g. Open low pressure He/H2 supply valve 5 979 OP 5-27

h. Close low pressure He/H2 supply valve 2 984 CL S-27

i. Open low pressure HejH2 supply valve 5 986 OP S-27

J. Close low pressure He/H 2 supply valve 2 991 CL S-27 H-15 (OFF)
Turn off He/H2 supply heater

k. Close line vent valve 1 993 CL S-5

i. Open derivatizer vent valve 2 994 OP S-12

m. Close derivatizer vent valve 1 996 CL S-12

n. Open NH4OH injection valve 1 997 OP S-24

o. Open line interconnect valve 1 998 OP 5-28

p. Open IEC outlet valve 14 999 OP S-9

24. Collect Amino Acids in Derivatizer

a. Close line vent valve 1 1013 CL S- 10

b. Open derivatizer inlet valve 4 1014'

I c. Close derivatizer inlet and IEC 1 1018 CL S-9,11
outlet valves

d. Close line interconnect valve 1 1019 CL S-28 -

e. Close NH OH injection valve 1 1010 CL S-24 H-10 (OFF)
Turn off NH4 OH injector heater 1020

f. Open line vent valves 60 1021 OP S-5,10.

g. Close line vent valve 1 1071 CL S-10 t

h. Close line vent valve 1 1072 CL S-5 H-12,13,14 (OFF)

Turn off line heaters

25. Evaporate Ammonia Solution I

a. Open derivatizer vent valve 1 1073 OP S-12

b. Change derivatizer heater set point - 1074 H-4 (100) p)
0

c. Heat derivatizer to 1000C and 120 1074
maintain

d. Close derivatizer,vent valve 1 1194 CL S-12

e. Change derivatizer heater set point 1 1195 H-4 (10)

f. Allow perivatizer to cool to 200C 48 1196
or below

g. Turn on line and He/H 2 supply heaters 12 1244 H-14,15 (ON)



26. Inject Butanol/HC1

a. Open line vent valve 1 1256 OP S-10

b. Open butanol/HCl injection valve 1 1257 OP S-32

c. Close butanol/HCl injection valve 1 1258 CL S-32

d. Open He/H 2 supply valve 1 1259 OP S-29

e. Clos He/H 2 supply valve 1 1260 CL S-29

f. Repeat steps b through e two times 8 1261

g. Close line vent valve, 1 1269 CL S-10 H-15 (OFF)
Turn off He/H 2 supply heater

h. Open derivatizer vent valve 2 1270 OP S-12

i. Close derivatizer vent valve 1 1272 CL S-12

j. Open derivatizer inlet valve 1 1273 OP S-ll1

k. Open butanol/HC1 injection valve 1 1274 OP S-32

1. Close butanol/HC1 injection valve 1 1275 CL S-32

m. Close derivatizer inlet valve 1 1276 CL S-11

n. Open line vent valve 1 1277 OP S-10

27. Esterify Amino Acids

a. Change derivatizer heater set point - 1278 H-4 (100)

b. Heat derivatizer to 1000C and 30 1278
maintain

c. Close line vent valve 120 1308 CL S-10 H-14 (OFF)
Turn off line heater

d. Change derivatizer heater set point - 1428 H-4 (37)

e. Allow derivatizer to cool below 500C 30 1428

28. Evaporate Butanol/HC1

a. Open derivatizer vent valve 90 1458 OP S-12

b. Change derivatizer heater set point 1 1548 H-4 (10)

c. Close derivatizer vent valve - 1549 CL S-12

d. Allow derivatizer to cool below 20 C 15 1549

e. Turn on line and He/H 2 gas supply 15 1564 H-14,15 (ON)
heaters

29. Inject Trifluoroacetic Anhydride/Methylene Chloride

a. Open TFAA/MC injector pressurization 2 1579 OP S-30
valve

b. Close TFAA/MC injector pressurization 1 1581 CL S-30
valve

c. Open line vent valve 1 1582 OP S-10

d. Open He/H 2 supply valve 5 1583 OP S-29

e. Close He/H 2 supply valve 1 1588 CL S-29 H-15 (OFF)
Turn off He/H2 supply heater

f. Close line vent valve 1 1589 CL S-10

g. Open TFAA/MC injection valve 1 1590 OP S-31

h. Close TFAA/MC injection valve 1 1591 CL S-31

i. Open line vent valve 1 1592 OP S-10

j. Repeat steps f through i 4 1593

k. Close line vent valve 1 1597 CL S-10

1. Open derivatizer inlet valve 1 1598 OP S-11

m. Open TFAA/MC injection valve 1 1599 OP S-31

n. Close TFAA/MC injection valve 1 1600 CL S-31

o. Close derivatizer inlet valve 1 1601 CL S-11

p. Open line vent valve 10 1602 OP S-10

q. Close line vent valve 1 1612 CL S-10 H-14 (OFF)
Turn off line heater

30. Acylate Amino Acid Esters

a. Change derivatizer heater set point - 1613 H-14 (37)

b. Heat derivatizer to 370C and maintain 45 1613

c. Change derivatizer heater set point 30 1658 H-4 (0)

31. Evaporate TFAA/MC

a. Activate thermoelectric cooler - 1688 TE-1 (ON)

b. Cool derivatizer to 0 C and maintain 15 1688

c. Open derivatizer vent valve 30 1703 OP S-12

d. Close derivatizer vent valve 1 1733 CL S-12

e. Turn off thermoelectric cooler 1 1734 TE-1 (OFF)

32. Evaporate Derivatives Onto GC Column

a. Turn on flame ionization detector - 1735 H-6 (ON)
heater

b. Heat FID to 2000C and maintain 45 1735

c. Turn on GC column, He/H 2 gas supply 15 1780 H-5 (25),
heaters H-15 (ON)

d. Open FID He/H2 supply valve 1 1795 OP S-15

e. Open FID outlet valve 1 1796 OP S-29

f. Open He/H 2 supply valve 1 1797 OP S-16

g. Open derivatizer inlet valve 1 1798 OP S-11

h. Opend derivatizer outlet valve 1 1799 OP S-13 H-16 (ON)

i. Turn on derivatizer heater - 1800 H-4 (100)
Turn on 02 supply heater

J. Heat derivatizer to 100OC and 40 1800
maintain

k. Turn off derivatizer heater 1 1840 H-4 (OFF)

i. Close derivatizer inlet and outlet 1 1841 CL S-11,13
valve

m. Open GC He/H2 supply valve 1 1842 OP S-14 -

n. Close He/H2 and FID supply valves 1 1843 CL S-15,29

33. Start Flame Ionization Detector

a. Open 02 supply valve 1 1844 OP S-33

b. Activate hot wire ignitor - 1845

c. Open FID He/H 2 supply valve 1 1845 OP S-15 C -.

34. Carry Out Gas Chromatographic Analysis U T .

a, Heat GC column at 7.5
0
C/min to 100

0
C 10 1846 H-5 (Ramp 1) .O

b. Change temperature-time profile to 25 1857 H-5 (Ramp 2)
1
0
C/min

c. Start data collection 45 1881 .. t

d. Hold GC column temperature at 170
0
C 15 1925 H-5 (Hold)

e. Stop data collection 1 1941

f. Close 02 supply valve 60 1942 CL S-33 H-16 (OFF)

~PTurn off 02 supply heater

NO g. Turn off column heater 30 2002 H-5 (OFF)

0 h. Close FID He/H2 supply valve 1 2032 CL S-15

i. Turn off FID heater 10 2033 H-6 (OFF) _D

j. Close FID outlet valve 1 2043 CL S-16_

k. Close GC column He/H2 supply valve TBD 2044 CL S-14 H-15 (OFF) (
Turn off He/H 2 supply heater

NOTE: As discussed in Section 4.3.6, the valves in contact with the processing or reagent

solutions are gas actuated by a manifolding system. Thus, for example, OP S-4 re-

presents the opening of the pilot and master supply solenoid valves, followed

shortly thereafter by their closure. CL S-4 represents the opening of the pilot

and master vent solenoid valves, followed shortly thereafter by their closure.



6) Inject Standard Amino Acids Into the Extractor

Prior to the extraction step, standard amino acids (TBD) are
injected onto the soil to provide an internal reference.

The reference amino acid solution is injected by first pres-
surizing the reagent container via S-17, closing S-17 and
opening S-18 and S-4 to permit flow. This reagent is not
used again until the next analysis. Excess reagent in the
line is vented through S-5.

7) Inject H 2 0 Into Extractor

The first step of the analysis consists of water extraction.
This process has the advantage over the previously used first
step of acid hydrolysis in that less interfering material from
the soil is present during the actual hydrolysis.

This allows for milder desalting conditions: elimination of the
HF/OH- desalting step and a volume reduction in the ion
exchange resin.

The water is injected into the extractor by opening S-21 to
pressurize the reagent container, closing S-21, then opening
S-22 and S-4.

8) Clean Line

After reagent injection, housekeeping details are carried out
to wash and vent injection lines. The line is vented by open-
ing and closing S-5. It is then flushed with water by opening
S-22 and dried by gas purge through S-27.

9) Heat Extractor

The extractor is then heated to 165 ±50 C for an hour, then
cooled to below 50 0 C, in order to conduct the extraction step.

10) Transfer Extract to Hydrolyzer/Evaporator

The extract is then filtered away from the soil. The hydro-
lyzer cell is heated to 10 0 C with H-2.

Filtration is accomplished by opening valves S-4 and S-6
between the two cells and allowing the solution to flow after
venting the hydrolyzer/evaporator. Completion is assured
by subsequent pressurization of the extractor, then allowing
flow through S-4 and S-6 again into the hydrolyzer/evaporator.

11) Inject HC1 Into the Hydrolyzer

The amino acids present in life containing soils are at least
partially in the form of biopolymers (peptides and proteins).
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Thus, a major step in the separation and detection is to break
down any polymers in the extract into the individual amino
acids by acid hydrolysis.

Reagent injection is accomplished by pressurizing the HC1
reservoir and then injecting the HC1 with the volume con-
trolled by the time the HCI injection valve is open.

12) Start Hydrolysis

The hydrolysis is conducted by heating the hydrolyzer/
evaporator at 110 0 C for 5 hours. While the hydrolysis is
being carried out a pre-elution and regeneration of the ion
exchange column is conducted to ready the IEC for use.

13) Clean Lines

Once again any HC1 or extract residue remaining in the lines
is removed by washing and drying the lines.

14) Pre-elute Ion Exchange Column

During storage, ion exchange resin by-products develop
which interfere with gas chromatograph data. Much of these
by-products can be eliminated by cycling the ion exchange
column through base and then acid (with water washes
between reagents) immediately prior to experimental use.

Ion exchange column cycling is initiated by first pressurizing
the NaOH container via S-25, closing S-25 and injecting 10ml
through S-26. The IEC effluent is vented through S-10, S9.

15) Wash Ion Exchange Column

The NaOH elution is followed by a 20 milliliter water wash
accomplished by pressurizing the reservoir, then flowing
through S-22 and S-28. Valve S-9, which was closed at
completion of NaOH injection to prevent gas from entering
the IEC, is reopened to allow liquid flow.

16) Regenerate Ion Exchange Column

The resin is then returned to the acid form necessary for
actual use by washing with 15 milliliters 6N HC1.

This is done by pressurizing the HC1 injector, then flowing
through S-20. Valve S-9, closed as a protective measure,
is again opened to allow flow.

After the HCI injection, the line is vented through S-5 to
eliminate HCI contamination of following injections.
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17) Wash Ion Exchange Column

The ion exchange column is then washed to neutrality with
20 milliliters H2 0 injected in the same manner as above. At
the completion of the washing step, the water injector heater
is turned off, and the line heaters are turned off to conserve
power.

18) End Hydrolysis, Evaporate HC1 Solution

At the completion of the hydrolysis step the cell heater power
is reduced by changing the set point to 20 0 C and allowing the
cell to cool below 50 0 C so that the vent valve can be opened
without bumping.

Evaporation is then accomplished by opening S-7 and heating
to 100 0 C. The evaporation rate is controlled by a flow
restrictor located downstream of the valve (FR-1).

The heater is designed to provide enough heat input for the
evaporation process and any heat transfer to the attaching
hardware. A 50 percent evaporation time margin is pro-
vided to assure complete evaporation.

At the completion of evaporation the cell is then allowed to
cool below 500C. Heaters are again powered to gas supply
line, fluid line and water injector (H-9, H-12, H-15).

19) Dissolve Amino Acids and Residual Salts

The residue from the preceding step is dissolved in 5 milli-
liters water which is injected in the nominal manner as above.

20) Mix by Gas Bubbling

The solution is stirred alternately by pressurizations with
He/H 2 , then venting at 0. 1 minute intervals. This process
is repeated for a total of ten cycles to insure complete dis-
solution of sample. The hydrolyzer is allowed to cool to
200 to 25 0 C. Line heaters are turned on (H-13, H-14) for
subsequent use.

21) Place Solution on Ion Exchange Column

The amino acid solution is then placed on a strong acid-type
cation exchange resin column which is in the acid form. As
long as the solution is not too acidic or too alkaline, the
amino acids and residual cations are retained and can be
washed. The amino acids can be eluted with an ammonia
solution while the inorganic cations are still retained (except
aluminum). In order for the ion exchange purification pro-
cedure to be effective, the flow rate through the column must
be slow enough (less than 0. 5 ml/min) to allow the exchange
reactions to equilibrate.
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Flow is highly restricted at the IEC outlet to assure that
liquid in the column does not flash into a two-phase mixture.
Flow direction is from the bottom up to provide a slight
increase in column efficiency and to insure maintenance of
a liquid column even if the evaporator flow resistance
dominates (i. e., no flow from the column caused by gravity).

Because of the possibility of flow variations out of the
hydrolyzer/evaporator into the IEC, and because simple
timed sequencing is not an adequate method for recovering
all of the liquid contents of the cell, a liquid sensor is pro-
vided between the hydrolyzer/evaporator and IEC. This
sensor consists simply of two electrodes. While fluid is in
contact with both electrodes, it will provide a low resistance
circuit. A gas interface will interrupt this circuit, indica-
ting completion of the flow process. This open circuit will
trigger the closing of the hydrolyzer/evaporator outlet valve
and IEC vent valve.

22) Wash Ion Exchange Column

Water is injected through the IEC to wash out non-retained
material. This is accomplished in the nominal manner, first
by pressurizing the water injector, then injecting 15 milliliter
water by opening S-22, S-28 and S-9. The ammonia injector
heater (H-10) is also turned on in this step.

23) Elute Ion Exchange Column

Elution of the amino acids is accomplished with ammonia.
Enough reagent must be supplied to displace all of the liquid
within the column (if flow were from the top down, a smaller
quantity of NH 4 0H solution, followed by gas, might be used),
and also account for the reaction of the ammonia with the ion
exchange resin which is still in the acid form. Injection after
injector pressurization through S-23 is accomplished by open-
ing the IEC vent valve S-9. After a sufficient quantity has
been injected, the water wash will have been displaced, and
the amino acids will be in the first portion of the NH 4 OH
effluent.

Prior to amino acid collection, the deriVatizer is heated to
10 0 C and is vented via S-12.

24) Collect Amino Acids in Derivatizer

At the point of ammonia breakthrough, and accompanying
amino acids, the vent valve S-10 is closed and the inlet
valve to the derivatizer S-11 is opened.

The baseline design uses a timed sequence to perform this
operation. The first 2 millimeters of ammonia contain
virtually all the amino acids. Four minutes after ammonia
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breakthrough the appropriate 2 millimeters will have eluted.
Collecting additional solution would increase the amount of
salts collected with the amino acids. At this time the deri-
vatizer inlet valve, the IEC outlet valve and the ammonia
injection valve are closed. Line vent valve S-5 is opened
for a time to clean the line.

25) Evaporate Ammonia Solution

After the effluent from the purification procedure is trans-
ferred to the derivatization cell, it is dried by a timed heat-
ing period with vapor removal through an orifice as in the
previous evaporation step. The vent valve is opened, and
the derivatizer is heated to 100 0 C for 120 minutes. The
derivatizer is then cooled to below 20 0 C.

The amino acids in their free state are very polar and hence
cannot be volatilized without decomposition nor separated by
gas chromatography directly. However, by carrying out
reactions such as esterification of the carboxylic acid group
and acylation of the amino group, volatile derivatives are
formed which can then be separated by gas chromatography.
In addition to separating the amino acids from each other, it
is also desirable to separate the two optical isomers of those
amino acids which contain an asymmetric site since strong
interferences as to the possibility of biogenic origin of the
amino acids can be made based on the isomer ratios. How-
ever, the two optical isomers of a given amino acid are
equivalent in a symmetric environment. If an alcohol such
as 2-butanol which is also optically active is used to esterify
the carboxylic acid function, the diastereomers are formed
with those amino acids which also contain asymmetric sites.

Now the derivatives with the same optical configuration at
both asymmetric sites (DD and LL) are chemically and
physically different from those derivatives with different
optical configuration at the two asymmetric sites (DL and LD)
and can be separated by a variety of gas chromatographic
columns. Ninety percent pure 2-butanol is used so that two
peaks are obtained for each optically active amino acid regard-
less of the optical purity of the amino acids in order to con-
firm the separation and identification by the gas chromatograph.

26) Inject 2-Butanol/HC1 Into Derivatizer

Since the 2-butanol/HCl mixture cannot withstand the sterili-
zation conditions without excessive reaction, the anhydrous
HC1 gas is not mixed with the 2-butanol until the instrument
is functioning at its destination. The temperatures experi-
enced by the 2-butanol/HC1 solution at the destination are
moderate enough so that the solution will be stable through
the 90-day life of the instrument. Hence, this reagent need
only be prepared once. This is done the first time the
experiment is performed.
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Prior to reagent injection, the lines are cleaned of any
residue water vapor or other contaminants that would inter-
fere with the derivatization process. This is done by alter-
nately venting butanol/HC1l through S-32 and S-10 and purging
with He/H 2 through S-29. This is done a total of three times.

The injection of 0. 5 milliliter 2-butanol/HC1 is accomplished
by opening the derivatizer inlet valve S-11, followed by open-
ing the injection valve S-32 for 1 minute and then closing it.

27) Esterify Amino Acids

The actual esterification of the amino acids is accomplished
by heating to 100 0 C for 2 hours. At the end of the 2-hour
period the derivatizer is allowed to cool to below 50 0 C to
prevent bumping when the vent valve is opened to start the
subsequent evaporation.

28) Evaporate Butanol/HC1l

The butanol/HCl is then evaporated through S-12 while heat-
ing to 1000C again. When evaporation is complete, the cell
is cooled to below 200C.

29) Inject Trifluoroacetic Anhydride/Methylene Chloride
Solution into Derivatizer

After the carboxylic acid function has been esterified and
excess reagent has been removed, the amino function is
acylated with trifluoroacetic anhydride with methylene
chloride present as a solvent. The resulting N-TFA-2-butyl
derivatives of the amino acids are quite volatile and are
readily separated and resolved by gas chromatography.
Other acylating agents could be used in place of the tri-
fluoroacetic anhydride, but because of its short reaction
times and lack of interference in the gas chromatographic
separation, it is the reagent of choice.

The fluid lines are cleaned prior to use in the same manner
as with the preceding reagent, cycling between TFA/
methylene chloride and He/H 2 purge gas twice before
injection.

The injection process is accomplished through S-31 and S-11.

30) Acylate Amino Acid Esters

The final derivatization step is accomplished by heating the
cell to 37 0 C for 1 hour. At the end of this step the cell is
allowed to cool.
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31) Evaporate Trifluoracetic Anhydride/Methylene Chloride

Prior to injection of the derivatized amino acids into the gas
chromatographic column, the reaction reagents must be
eliminated. To prevent loss of the volatile derivates,
evaporation is carried out below 100C. The thermo-electric
cooler is used to control the temperature at 00C. Evapora-
tion occurs through S-12.

32) Evaporate Derivatives Onto GC Column

The current sequence calls for direct evaporation of the
derivatives out of the derivatizer cell onto the GC column for
ultimate separation and an analysis. Prior to this evapora-
tion the GC is turned on: the detector heater (H-6) and gas
supply, the GC column gas supply and heaters, and the 02
supply heater.

The derivatizer is then opened (S-11, S-13) to the GC col-
umnn and heated to 1000C to evaporate the amino acid
derivaties onto the column, while the GC column is kept
cool enough to trap the derivatives. The pressurant gas
supply is used to sweep the derivatizer and act as a carrier
gas during this event. At the conclusion of this event, the
derivatizer heater and solenoid valves are turned off. This
procedure results in trapping the entire sample quantity in
the first few feet of the GC column.

In order to achieve a good separation in a gas chromatograph,
the sample vapor in the column at the start of the separation
must be concentrated in a small volume of carrier gas. If
the volume of carrier gas is large (broad), poorly resolved
peaks are obtained. This factor becomes increasingly
important as the size of the column is decreased, so that
with capillary columns sample introduction can be a serious
problem.

Effective dead volume, i. e. , that part of the volume in the
active portion of the introduction, column and detector flow
paths which is not effective in the separation, is also an
important consideration. The effect of dead volume is to
spread the sample components into a greater volume of car-
rier gas, thus degrading resolution

By trapping the derivatives in the cool column and then
heating the column to start the separation, any problem from
slow introduction of the sample into the carrier gas and any
dead volume effects prior to the column are eliminated. This
introduction technique is that the column be cool enough to
immobilize the derivatives during the sample introduction
and that contaminant volatiles are not introduced from the
derivatizer.
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The overall system sensitivity requirement is to detect
0. 1 nanomole of each amino acid in the original soil sample
(with a goal of 0. 01 nanomole). To meet this requirement
it is necessary to introduce the entire quantity of the result-
ing amino acid derivatives into the gas chromatograph. On
the other hand, the possibility of a relatively rich soil
sample cannot be discounted. In this case, the amount of
derivatives present might exceed the capacity of the column
so that it would no longer give good resolution and separa-
tion. (The specification allows for this possibility by relax-
ing the resolution requirements for samples containing
greater than 50 nanomoles).

When evaporation is completed, the gas flow path is switched
from the derivatized cell to a valve leading directly to the
GC column.

33) Start FID

The FID is started by opening the oxygen gas supply valve
S-33, and then activating the hot wire ignitor. If combustion
is not initiated, the ignitor shuts off the fuel and after a
suitable delay again opens the fuel valve and again attempts
to ignite the mixture. After ignition, the FID heater and
temperature sensor are used to maintain the detector tem-
perature at 200 0 C.

34) Carry Out Gas Chromatographic Analysis

To carry out the gas chromatographic separation, the col-
umn which now contains the trapped derivatives is heated in
a controlled manner. First, the column is heated rapidly
to the temperature at which the separation of the more
volatile amino acid derivatives begins, then the temperature
is raised at a rate that will give good separations and short
retention times.

The derivatives have a wide range of volatility so that the
ideal temperature for resolution of each amino acid deriva-
tive is different. If a column is operated isothermally to
resolve the low boiling derivatives, the high boiling deriva-
tives emerge as broad peaks of low sensitivity and long
retention time. By the use of a controlled increase in the
temperature of the column during the analysis (temperature
programming), each component is separated close to its
optimum temperature. The result is that high boiling com-
pounds are eluted earlier and as sharp peaks, thus decreas-
ing analysis time and increasing the overall sensitivity of
the system. However, as the temperature of the column is
increased, volatility of the liquid phase increases. If
appreciable, noise and an upward drift in the base line
result.
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The amount of bleeding which can be tolerated acts as an
upper bound to the temperature profile. The exact temper-
ature profile will be determined by the particular column
ultimately selected to carry out the separation. Data col-
lection will start at a predetermined time after column tem-
perature programming is initiated. As an example, a profile
used in the laboratory with a Carbowax 20M column is: heat
the column oven from 25 0 C (trapping temperature) to 100 0 C
in 10 minutes, then heat from 100 0 C to 170 0 C at lo/min.
Finally, hold the column at 170 0 C until the analysis is com-
pleted. In contrast to laboratory practice of using a forced
convection oven, the instrument GC column will be heated
directly, using the column tube as the resistance heater
element.

This method of heating is more efficient and compact than
laboratory practice and should also give better control and
reproducibility. The FID is maintained above the maximum
column temperature for the entire analysis.

Upon the conclusion of data collection, the oxygen is turned
off. The column and detector heaters are left on for a time
period which will depend on the column ultimately chosen
(for example, 1/2 to 1 hour). The purpose of this step is to
purge any material of low volatility in the column so that it
will not interfere with subsequent analyses. Upon completion
of this purging period, the column, and then the FID heater
are shut off.

35) System Cleanup

The system requires cleanup of the processing cells and
connecting lines and posibly a heating and purge of the GC
column between analyses. The detailed cleaning steps will
require further laboratory development so a detailed sequence
for these steps has not been defined. However, the general
operations and requirements are known. The cells and lines
will be cleaned with a series of reagent soaks, heatings and
flushes. The IEC would be regenerated and possibly cycled
one or more times. Thus the overall time and power require-
ments for the cleaning sequence will be similar to that of the
actual operating sequence. The power and time requirements
for the cleaning sequence would not be expected to exceed that
required for the operating sequence.

4. Z2 INSTRUMENT SYSTEM DESIGN

The original flight design presented in TRW's Final Report No.

16660-6001-RO-00 was based on Processing Sequence No. 1, which was

also used for the breadboard test program. Ongoing research at NASA/ARC

resulted in process modifications and Processing Sequence No. 2 was

selected as the baseline flight sequence.
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There are significant differences between the two sequences: In the

previous sequence, acidic hydrolysis was carried out directly on the soil.

This was followed by filtration, evaporation of HCI and then by a

HF-NH4 0H desalting process. This was followed in turn with final desalt-

ing on a rather large (30 milliliters) ion exchange resin column. Elution

of the column, derivatization, and a gas chromatographic analysis com-

pleted the procedures. In the new process, the soil is extracted with

H 2 0 at 165 0 C for 1 hour, the extract is filtered off and HC1 is added to

the extract. After 5 hours of hydrolysis at 110 0 C, the HC1 solution is

evaporated to dryness, the product redissolved and passed directly onto a

small (5 milliliters) ion exchange column. Subsequent steps are unchanged

except for volume adjustments. While the new procedure may have some-

what reduced recoveries with some types of samples and may cause a

small amount of racemization, it has many advantages including easier

filtration requirements, fewer and less corrosive reagents, and sig-

nificantly less interfering material, especially from the smaller ion

exchange column.

Because of these differences and because of problems uncovered in

the breadboard test program, the flight design has been significantly

modified. A major modification is the elimination of the three separate

sets of non-reusable processing cells, and the introduction of only one

set of processing cells which can be used repeatedly. As pointed out

before, the basic design of all instrument components was not changed due

to the modifications in the flight processing sequence and the current test

cells, ion exchange column, and GC-column are flight weight designs of

the prototype breadboard components.

While the previous design of the instrument is modified, the basic

design philosophy remains unchanged. The adopted modular design

approach facilitates testibility, and repair and replacement capability at

the component, subsystem and system level. Viking '75 hardware and

technology are chosen whenever this leads to the elimination of duplicate

engineering development efforts and to potential cost savings. Margins

are provided for each component design and contingencies are built in for

weight, volume, electronic parts and board space, valves, heaters, etc.
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The instrument is designed to simplified VLBI interface specifica-

tions and the VLBI structural design concept is used, including the provi-

sion for accommodating the lander soil processor loads. Thermal control

is achieved by isolators, emissivity coatings, heaters and one thermo-

electric cooler for the derivatizer. The average instrument power for one

analysis is approximately 18 watts (cold case) averaged over 1 day, but

can easily be brought down to below the maximum specified 16. 3 watts.

The instrument weight with reagents is 29. 4 pounds.

The instrument system package consists of two major subsystems.

The mechanical subsystem (MSS) which contains the soil distribution

assembly and the processing assembly, and the electronic subsystem

(ESS). A view of the assembled instrument depicting the two subsystems

and the location of major instrument components is shown in Figure 4-3.

Also shown is how the Lander soil processor interfaces with the Wet

Chemistry Instrument.

The primary structure in the mechanical subsystem is an aluminum

experiment mounting plate to which all major instrument components are

attached. The experiment mounting plate attaches with titanium struts to

the upper mounting plate which interfaces with the Lander mounting plate,

and which provides mounting points and load support for the Lander soil

processor.

The electronic subsystem is contained in a single module which

fastens directly to the Lander mounting plate. The electrical connection

between the ESS and MSS is established with a cable harness ending in

electrical connectors inside the MSS.

4. 2. 1 Interfaces

An interface control drawing of the instrument is presented in

Figure 4-4. The interface to the Lander is identical to the VLBI interface

with the following exceptions: There is only one thermoelectric cooler

instead of four on VLBI, and the thermal interface plate which is required

for the VLBI soil illumination lamp has been eliminated. The external

dimensions of the instrument are the same as those specified for the VLBI

instrument: 13. 50 x 10. 75 x 11.60 inches.
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4. 2. 2 Mass Properties

The computed weight of the instrument, including consumables, is

29.4 pounds. The weight computations were derived from the detailed

drawings for the instrument components and from actual weight numbers

of existing VLBI hardware. A detailed weight breakdown is given in

Table 4-3. An assessment of the 27. 3 pounds dry weight estimate is

given in Table 4-4. It shows that more than 50 percent of the dry weight

is based on actual VLBI hardware and that only 3. 3 percent is based on

conceptual design. The maximum dry weight specified is 30 pounds so

that on almost 10 percent weight margin is left.

4. 2. 3 Thermal Design and Power Profile

TRW's overall approach to the thermal control of the Wet Chemistry

instrument is essentially unchanged from that formulated in Section 3. 2. 5

of the Contract NAS 2-6218 Final Report, i. e.:

* Thermally isolate the instrument from the Lander mounting
plate to minimize the effect of variations in mounting plate
temperatures.

* Physically mount and isolate components (or series of com-
ponents) within the instrument according to their specific
requirements.

The thermal model constructed during this previous contract

assumed metallic conduction to be the dominant mode of heat transfer

within the instrument. Experience gained in the thermal design of the

VLBI instrument from 1971 to 1974 indicates that if a temperature con-

trolled component is mounted to a colder platform, conduction across

the mount amounts to around half of the total heat loss, with most of the

remainder attributable to gas conduction. Losses due to IR radiation and

natural convection are usually small but not negligible. Accordingly an

approximate analysis accounting for all heat transfer modes was conducted

for each component of the revised instrument to determine worst cold case

power requirements. Each component was considered separately con-

nected to a mounting plate at -15 0 F (-26 0 C). This procedure should pro-

duce conservative cold case power since the heat lost by each component

will tend to warm the surroundings of all components, thus reducing sub-

sequent losses.
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Table 4-3. Weight Summary

Weight (Pounds)

Soil Distributor 0.3

Test Cells

Extractor 0.4

Hydrolyzer 0.6

Derivatizer 0.4

Ion Exchange Column 0.2

Gas Chromatographic Column 0.5

Flame Ionization Detector 0.2

Reagent Injectors

Amino Acids 0. 3

HC1 0.6

H 2 0 0.5

NH4 0H 0.5

NaOH 0.5

HC1/Butanol 0. 3

TFAA/MC 0.4

Isolation Valves 0. 8

He/H 2 Subsystem i. 3

02 Subsystem i. 3

Solenoid Valves and Block 0. 8

Gas Operated Valves 1.5

Plumbing 0.5

Waste Management 0. 2

Thermoelectric Installation 0. 3

Primary Structure 5.9

Electronics Subsystem 8.4

Electrical Installation 0. 6

Total Dry Weight 27. 3

Consummable s

Gases 0.3

Liquids 1.8

Total Weight 29.4
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Table 4-4. Weight Assessment

Pounds Percentage

Weight Based on VLBI Components 14.4 53

Weight Based on Modified Components 7. 3 27

Weight Based on Prototype Components 2. 3 8

Weight Based on Conceptual Design 3. 3 12

Total Dry Weight 27.3 100%

Figure 4-5 shows the cold case power profile for a single analysis.

The profile assumes a -15 0 F instrument interface temperature and is

largely based on the thermal hand calculations described above. These

calculations were based on worse case assumptions. Somewhat lower

power requirements would be indicated by a thermal analyzer program

model in which heat dissipated in each component could soak to adjacent

components.

The average power for a single analysis is 18.1 watts averaged over

the 2073 minute duration of a compact sequence. This exceeds the total

16. 3 watts available in the cold case according to specification NASA/ARC

A-16231 Rev. 3 (October 15, 1973). Programming a 400 minute hold

between extraction and hydrolysis will cause the average power to fall

below the specified 16. 3 watt level. Thus 2473 minutes are required for

a single analysis.

Paragraph 2. 1. 3. 7. 4 of the specification requires that operating

power consumption excluding heaters not exceed 10 watt averaged over

15 days or 7. 6 watts averaged over one day. If operating power is defined

as power to operate electronics and actuate valves only 4. 6 to 5. 0 average

watts of this category will be used. On the other hand, the formula given

for heater power allows 8. 72 watts in the cold case (-150F interface).

Clearly the heater power situation for the Wet Chemistry instrument is

somewhat different than for VLBI. In VLBI heaters typically are used to
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hold low incubation temperatures for hours at a time and much more heat

is required in a cold case environment than in the hot case. In the wet

chemistry instrument the reaction vessel heaters are used to actually

operate the instrument, i. e. to heat solutions quickly to over 100 0 C and

to evaporate samples and solvents. Nearly as much heater power is

required to evaporate a solution at 1000C in -260C surroundings as in

+4 0 C surroundings. Indeed hot case heater power is expected to be about

85 percent of the cold case requirement. Thus the specification can not

be satisfied in the hot case with present power allowances.

4.3 MECHANICAL SUBASSEMBLY AND COMPONENTS DESIGN

An exploded view of the mechanical subsystem is shown in Figure

4-6. It illustrates the assembly of the mechanical components including

the soil distributor onto the experiment mounting plate, which attaches to

the upper mounting plate with titanium struts. The assembled MSS is

enclosed by a metal enclosure as shown in Figure 4-3.

4. 3. 1 Soil Distribution Assembly

A layout drawing of the proposed soil distribution assembly (SDA) is

shown in Figure 4-7. It shows a greatly simplified version of the VLBI

soil distribution assembly. The latter (Figure 4-8) is required to deliver

three soil samples of different sizes to three different locations, while

this experiment requires the delivery of three soil samples of only one

size to only one location. Otherwise the same design parameters and

requirements as for VLBI have been specified.

The SDA consists of a soil inlet tube for receipt of the bulk soil

from the Lander soil processer, a metering tube for measuring the bulk

soil, a soil carrier (shuttle) for transporting the sample to the extractor,

a dump cell for the excess soil, and a drive motor. These components

are mounted on an aluminum bracket. Also on the bracket is the gas

actuated extractor cover.

The prototype of the VLBI SDA flight units has now completed more

than 2300 cycles at from -2000F to 97 0 F and at 8 millibars to ambient air

pressure without a single failure of any sort. It has never failed to

deliver the correct soil samples using four different soil models at various

humidities, made up to VLBI specifications.
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Figure 4-8. VLBI Soil Distributor



Based upon experience gained during the past 3 years of develop-

ment for VLBI the following key points can be substantiated:

* The mechanism cannot be jammed by large soil particles
since cylindrical CRES wire bristle brushes permit moving
metal interfaces in the vicinity of the soil to be never closer
than twice the sieve size through which the soil is processed
by the Lander.

" Metered soil samples are accurate and repeatable within
5 percent.

* Soil losses during transportation are negligible.

* Oscillating the shuttle electronically at 10 Hz, while receiving
soil, prevents cavitation and ensures that the correct volume
has been received.

* Oscillating the shuttle while delivering soil ensures com-
plete evacuation of the metering tube into the extractor. It
also ensures complete emptying of all surplus soil into the
dump cavity in preparation for the next bulk sample.

* Carry-over from one bulk sample to the next is thus far less
than 5%.

4. 3. 2 Processing Cells

The general design requirements for the three types of processing

cells (extractor, hydrolyzer/evaporator, and derivatizer) are similar.

The three cells share the same basic material problems of resistance to

attack by corrosive reagents, and prevention of sample contamination or

sample loss. All three components need reagent and He/H 2 gas injection

ports, vent ports, and outlet ports. Each of the three cells is required

to maintain thermal control over the various steps in the individual

processes. The internal configurations must be designed to insure

proper cell operation over the ±35-degree range of Lander tilt angles.

The extractor has the unique requirement for a mechanism at the top to

accept the sample from the soil distribution device. The extractor and

hydrolyzer/evaporator require filters at their outlets. The hydrolyzer/

evaporator and derivatizer require evaporation of fluids as a part of

their processing cycle.

4.3.2.1 Extractor

A layout drawing of the extractor is presented in Figure 4-9. The

extractor is a flight weight version of the breadboard hydrolyzer

(described in Section 3.1.2), and consists of an all tantalum structure
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with multiple Teflon filters. Major modifications to the breadboard

design are:

1) The extractor head end is welded to the cell body and the
inlet port accepts the gas actuated extractor cover which
is part of the soil distribution assembly.

2) The hand operated solenoid valve simulator is replaced by
a gas actuated tantalum diaphragm valve.

The extractor is currently sized for a 1 cubic centimeter soil

sample to be extracted with 10 milliliters of H 2 0, which is injected

through the outlet port. A TBD amount of calibration amino acids is also

injected and included in the 10 milliliters total H 2 0 volume. The outlet

port is also used to inject pressurization gas for fluid transfer. An

external heater and temperature sensor are mounted to the cell for tem-

perature control. Tantalum tubing connected to the test cell will be

joined by EB welding. The filter in the bottom of the extractor will be

Teflon since no interference is expected to result from the extraction

process. If planned breadboard investigation of the new baseline process

should show interference from the Teflon filter, different filter materials

and designs will be investigated.

4. 3. 2. 2 Hydrolyzer/Evaporator

A layout drawing of the hydrolyzer/evaporator is shown in Figure

4-10. This processing cell is a flight weight version of the breadboard

evaporator (described in Section 3. 1. 3), and consists of an all tantalum

structure with a filter stack in the bottom of the cell. Major modifica-

tions are in the detailed design of the flanged head end and bottom plate.

The head end accepts two tantalum diaphragm valves for the inlet and

vent lines. The purge tube in the center of the cell serves as the entrance

for the extract, as support for the deflector plate, and as purge tube

through which the carrier gas is injected to provide agitation during dis-

solution of the residue with H 2 0. Tantalum tubing connected to the cell

will be joined by EB welding.

The filter in the bottom of the hydrolyzer/evaporator is made out

of Teflon in the current design. If future breadboard testing using the

new baseline processing sequence shows that the Teflon filter leads to

unacceptable interference levels, different filter materials and designs
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will be investigated. There is a possibility to eliminate a filter altogether

with the new baseline process since no precipitate might be formed in the

hydrolyzer/evaporator. Further tests are proposed to investigate this.

An external heater and temperature sensor (not shown in Figure

4-10) are provided for temperature control.

4. 3. 2. 3 Derivatizer

Figure 4-11 presents the layout of the derivatizer, which is a flight

weight version of the breadboard design (described in Section 3. 1. 5). The

derivatizer is an all tantalum cell with flanged tantalum head end. Major

modifications to the breadboard version are in the detailed design of the

head end which has three gas actuated tantalum diaphragm valves in the

vent line, inlet, and outlet to the GC column. Because the reagent vol-

umes in the new baseline process are smaller than in the process used in

the breadboard, the volume of the flight design derivatizer can be reduced,

pending the outcome of further breadboard tests. As in the hydrolyzer/

evaporator, the center tube is used for reagent and gas injection, and

also to receive the effluent from the ion exchange column.

Contamination problems experienced with the breadboard derivatizer

due to the use of elastomeric seals in the hand-operated valve simulators

are minimized with the all tantalum diaphragm valves (with Teflon seats),

which are sealed to the derivatizer head end with tantalum/Teflon seals.

4. 3. 3. Ion Exchange Column

A layout drawing of the ion exchange column (IEC) design is shown

in Figure 4-12. The design is again a flight weight version of the ion

exchange column used in the breadboard (described in Section 3. 1. 6).

The IEC consists of a thin walled tantalum tube with gas actuated tantalum

diaphragm valves at the inlet and outlet to hermetically seal the IEC

during interplanetary cruise. The major difference to the breadboard

IEC is the size of the resin bed which is 5 milliliters as compared to

30 milliliters in the breadboard. Reduction in resin volume is possible

in the new baseline processing sequence because hydrolysis is carried out

not on the soil but on the water extract of the soil, and because the

HF/NH4 0H precipitation step is eliminated. This results in the formation
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of a mcuh smaller amount of salt which has to be removed in the ion

exchange column.

The column is packaged with Biorad AG30W-x8 (Dowex 50W), 200 to

400 mesh ion exchange resin. The resin is maintained between two Teflon

filters and held under compression by a Teflon coated retainer spring in

the inlet port of the IEC to minimize the dead volume in the outlet. The

retainer spring also allows for expansion of the resin during column operation.

An external heater and temperature sensor are provided for tem-

perature control during cruise (to prevent freezing of the H 2 0) and opera-

tion of the column.

4. 3.4 Thermoelectric Cooler/Heat Pipe Assembly

In order to provide cooling of the derivatizer test cell to below 10 0 C

a thermoelectric cooler (TEC) will be utilized in conjunction with a heat

pipe as schematically illustrated in Figure 4-13. The proposed design is

similar in concept to that employed in the VLBI instrument. Experience

gained during development testing of the VLBI unit will permit the incor-

poration of minor design improvements to increase the efficiency of the

cooler.

The cold side of the thermoelectric cooler is attached directly to the

side of the test cell with a special conductive grease film coating at the

interface. Heat extracted from the test cell is transmitted from the hot

junction side of the TEC to the upper instrument mounting plate by means

of a heat pipe. The inherent insulative properties of the TEC will prevent

any significant heat loss to the heat pipe when the test cell is heated during

the evaporation portion of the derivitization sequence.

Both the thermoelectric cooler and the heat pipe are static devices

utilizing no moving parts. The TEC makes use of semi-conductor material

properties that initially were developed to convert thermal energy to elec-

tricity. Thus by reversing the operation and, applying an electrical poten-

tial across the semiconductor couple, the action is reversed and heat is

forced from one side of the couple to the other. The heat pipe which in

turn conducts the heat to the spacecraft structure, by means of the Lander

mounting plate, consists of a tubular structure containing a capillary-wick

anda smallamount of vaporizable fluid. The heat pipe employs an essen-

tially isothermal boiling condensing cycle with the capillary wick pumping the

condensate from the cool end of the "pipe" to the hot end where it is vaporized.

The heat trans ported is thusby means of the latent heat of vaporization which

is many times greater than the heat that can be transferred in a conventional

conduction system resulting in a large saving inweight and volume.
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4. 3. 5 Gas Chromatographic Column

The gas chromatographic column consists of a stainless steel

capillary tube coated internally with a liquid phase. It must be maintained

below a critical temperature (approximately 250 C) for amino acid con-

densation during sample injection and then temperature programmed at

selected slew rates and within the specified temperature tolerance of

+0. 5 C.

The flight design GC column consists of 200-feet by 0. 030-inch ID

capillary stainless steel tube temperature programmed from 25 to 1700 C.

Thermal control is achieved by resistance heating of the stainless steel

tube.

The design of the GC column shown in Figure 4-14 is the same

presented in TRW's Final Report No. 16660-6001-RU-00. The dimensions

shown in the GC column assembly drawings are actually based on 150 feet

of 0. 024-inch ID tube. The design can, of course, easily be modified to

accommodate the 200 feet of 0. 030-inch-diameter tube which was used in

the breadboard GC column which has been described in previous sections.

A detailed discussion of the design given in Section 3. 3. 7, page 3-199, of

the previous Final Report.

4. 3. 6 Valves

The currently proposed valve concept is the result of our experience

from the breadboard tests and of extensive valve and system studies. The

initial valve concept was to use VLBI solenoid valves modified with tantalum

front end for reagent compatibility. Manually operated prototype solenoid

valve simulators were fabricated and tested in the breadboard. The

results indicate that the final version of this valve is satisfactory for all

applications except the derivatizer. There the elastomeric, dynamic

poppet shaft seal caused a high contamination background in the gas

chromatogram. A split ring Teflon shaft seal was evaluated but excessive

leakage into the valve cavity was experienced.

It was concluded the two options exists to solve the problem:

1) Protect the magnetic components in the valve cavity with
a combination of gold plating and an improved Teflon
dynamic seal.
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2) Isolate the magnetic components in the valve cavity
with a Teflon or metallic diaphragm or bellows.

The first option, in the case of the wet chemistry instrument, does

not present a completely satisfactory solution because contamination of the

reagents or sample due to even minor reactions cannot be tolerated. In

addition, the reliability of valve operation is adversely affected to a signi-

ficant degree by the probability of plating imperfections, resulting in

exposure of the magnetic material and the subsequent generation of cor-

rosion products which can readily impair actuation of the valve. The only

reliable solution to this problem is to isolate the reagents from the

magnetic components of the solenoid actuator, and the tantalum diaphragm

valve concept was adopted for further design studies. The fabrication

techniques for forming diaphragms are well founded and only minimal

development is anticipated.

Actuation of the diaphragm will require significantly higher forces

than are available with standard solenoids due to the relatively large

effective areas of this device when pressurized. Consequently it is pro-

posed to actuate the valve remotely by pneumatic pressure using small

solenoid pilot valves. A schematic layout of the proposed valve is shown

in Figure 4-15. Various methods will be studied to implement the alternate

pressurization and depressurization required to effect on-off operation.

In lieu of utilizing two valves on each diaphragm assembly, one to pres-

surize and one to vent, a scheme similar to that used on the VLBI vertical

actuators is planned. As shown in Figure 4-16 each individual diaphragm

assembly is controlled by its own valve in conjunction with either the

master gas control valve to open or the master vent valve to effect closure.

Thus only two extra valves are required per system.

The proposed approach is to use the current VLBI solenoid valve

for gas control functions and as a pilot valve for suppling gas to actuate

the tantalum diaphragm valve, which offers total isolation of the solenoid

valve components from the sample and corrosive reagents.

To prove that the proposed design approach is reliable and fulfills

all requirements TRW has proposed to NASA/ARC to build prototypes of

gas actuated tantalum diaphragm valves and test them during the next

phase of breadboard testing with the new baseline process. In addition,
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various other methods should be studied, including bellows isolation

members with both direct solenoid actuation and remote pneumatic

actuation.

4. 3. 7 Reagent Storage and Injection

It is currently planned to store the reagents in compatible metallic

containers. The layout of the proposed reagent injector is shown in

Figure 4-17. A gas actuated isolation valve is used to provide hermetic

sealing of the container. After the frangible disk at the outlet has been

punctured, the outlet is used for both pressurization and flow of the

reagent to the processing cell. The amount of reagent delivered to the

cell is determined by the control valve open time.

This design is a simplification of the concept used on VLBI, where

insertable glass containers are used for nutrient storage. The dis-

assembled VLBI nutrient injector is also shown in Figure 17. If long

term compatibility of the reagents in metallic containers proves to be a

problem, use of the VLBI type reagent injectors with glass ampoules
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may be required. Long term compatibility test are proposed to evaluate

whether reagent contamination or gas evolution results from reagent

reaction with metallic containers.

4. 3. 8 Gas Supply

The gas supply consists of two subsystems supplying oxygen to the

flame ionization detector; high pressure He/H 2 (165 psia) to pressurize

all gas activated tantalum diaphragm valves, gas actuated isolation valves

on the reagent containers and ion exchange column, and the gas actuated

extractor cover plate; and finely regulated low pressure He/H 2 (18 psia)

for the gas chromatographic column and flame ionization detector, and

for the pressurization of the processing cells, for purging and gas drying,

and for fluid routing and reagent injection.

The 02 supply system and the He/H 2 carrier gas supply system

each contain the following major components:

* Pressure vessel

* Isolation valve

* Filter

* Pressure regulator

* Fill valve

• Relief valve

The He/H 2 carrier gas and 02 supply system design is identical to

that for the VLBI instrument, with the exception of tank capacities and

materials, and the use of two regulators instead of three. The VLBI car-

rier gas supply is shown in Figure 4-18. The modular approach con-

serves space, minimizes weight, and reduces the number of joints,

thereby reducing potential leak paths. The gas supply assembly incor-

porates welded joints at component interfaces to minimize leakage.

Metallic diaphragms are used in lieu of moving piston seals and the use

of isolation valves prevents pressurization of the system over long

periods.

The first stage regulator was selected for simplicity to provide the

165 psia actuation pressure for the Hz/He system. The design incor-

porates a Ni-Span-C corrugated diaphragm as a sensing unit. Ni-Span-C
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Figure 4-18. Gas Supply System

was selected to minimize thermal effects on the spring rate of the sensing

unit. A spherical poppet and plastic seat make up the valve portion of the

regulator. The poppet is a 1-millimeter tungsten carbide ball. The seat

is polyimide, Vespel SP-l, selected to obtain the sealing properties of an

elastomer combined with the stability of a hard seat.

The second stage regulator is designed similarly, but with a much

higher sensitivity. Outlet pressure is closely regulated to meet the resolu-

tion requirements of the gas chromatographic column. Because of the

lower pressure, the diaphragm spring rate has been reduced in order to

obtain as precise a regulated flow as possible. The regulator has no sliding

surfaces and requires no lubrication. The only metal-to-metal contacts

are the diaphragm guide and the poppet seat. The guide maintains poppet-

to-seat concentricity and supports the diaphragm assembly against lateral

shock and vibration forces. Regulation is anticipated to be less than

2 percent.

The 02 supply system uses the same first and second stage regula-

tors to control the flow of oxygen into the flame ionization detector.

The tanks are pressurized through the fill valve in gradual stages to

prevent overheating. External cooling is usually required to produce

pressurization in a reasonable time and to minimize the number of fatigue

cycles. Generally, convection cooling with cool air or CO2 is effective.

The fill valve consists of an AM 355 housing, tungsten carbide poppet, and
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a polyimide (Vespel SP-1) seat. A piece of ground support equipment is

installed on the threaded fitting using an O-ring seal. A probe is used to

unseat the poppet and allow the tank to be filled. Removal of the probe

results in the poppet returning to the seat by means of a follower spring.

The poppet is then pressure-loaded closed as the supply pressure is

decreased. Subsequently, the inlet tube is welded shut, effecting a

redundant, positive seal for the long term storage. This item is in pro-

duction at this time.

A test port is located between the isolation valve and the filter at

the regulator inlet. This port is used to pressurize the system for func-

tional tests. The tube is sealed by the same process as the fill tube.

The utilization of the flame ionization detector as the baseline

detector has significantly affected the selection of materials from which

the pressure supply tanks will be fabricated. Inconel 718, the selected

material for the VLBI, although satisfactory for helium, is not considered

compatible with hydrogen because of embrittlement. Hydrogen embrittle-

ment occurs through a process identified in conjunction with high pressure

vessels and is most severe at room temperature. It can be distinguished

from the more common effects of stress corrosion by: (1) ionic hydrogen

in interstitial solution in the metal lattice, and (2) gaseous hydrogen sur-

rounding a nucleating and advancing crack front. These characteristics

have subsequently been described as "hydrogen- environment embrittle-

ment. Its general characteristics are:

a) The effect is one of embrittlement and only when in a
hydrogen environment.

b) It is a surface effect.

c) It is an immediate effect.

d) It is a function of hydrogen pressure.

e) The effect is not increased by temperature.

The combination of these effects is to embrittle the exposed surface

to a limited-finite thickness. This surface layer cannot, as a consequence,

under plastic deformation to the same degree as it can in air. For a
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susceptible metal, an existing crack or one formed through pressurization in

anhydrogen environment will propogate at a lower stress level and at a

more rapid rate than in an inert environment, even at low pressures

below 14. 7 psia. Test results of studies conducted to investigate these

effects on typical pressure vessel materials has resulted in the selection

of A-286, a high strength corrosion resistant steel as the material from

which the tanks will be fabricated. Low cycle fatigue and notch impact

test results indicate that the strength ratio of A-286 when exposed to

helium versus hydrogen is 1. 0. For comparison, Inconel 718 has a He/H 2

ratio of 0. 46 for the notched strength test and 0. 04 for the fatigue cycle

test.

Inconel 718 has been selected for use in fabricating the oxygen tank

based on compatibility studies and results from programs such as Apollo.

Thus, this tank will be identical to that used on the VLBI.

The VLBI tanks have been sized to hold in excess of 80,000 scc's at

4500 psi. The tanks also serve as structural supports for the other com-

ponents in the gas supply subsystem. The use of welded joints and the

isolation valve in the supply line will insure a long-term leak-tight

assembly.

4. 3. 9 Gas Chromatographic Column Detector

The baseline detector proposed for the flight instrument is still the

flight version of a hydrogen flame ionization detector (HYFID) developed

under NASA Contract NAS2-5469. TRW has conducted tests with a pro-

toptype unit under simulated flight instrument conditions to establish and

verify operating parameters for satisfactory performance. The results

of these tests and a detailed description of the design are incorporated

in TRW's Final Report No. 16660-6001-RO-00. No new information on

the HYFID detector has been accumulated since then. A drawing of the

flight version of the detector is shown in Figure 4-19.

Use of a state-of-the-art electron capture is also considered and it

is suggested that an electron capture detector will be evaluated with

respect to sensitivity, linearity, and response to interfering substances.

There are several reasons for evaluating an electron capture detector.

The most important reason is that some of the interfering material
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observed by flame ionization detection may be less sensitive to electron

capture detection and hence an improved signal to background ratio might

be obtained. Electron capture detection might also offer some design

simplifications, especially if the instrument were used in conjunction with

a mass spectrometer.

The use of an electron capture detector would require certain modi-

fications to the instrument system in the following areas: The electronic

subsystem needs to be modified in the front end of the analog data system

to adapt to the particular detector finally chosen. The hydrogen admixture

in the carrier gas would not be required and pure He could be used. The

oxygen for the flame ionization detector would be replaced by the electron

capture gas which would be nitrogen or an argon/methane mixture.

Finally the methylene chloride would have to be replaced by ether as a

solvent for the trifluoroacetic anhydride used in the derivatizer.
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Another alternative which is currently under study by TRW under

NASA/ARC Contract No. NAS2-7695 is incorporating the Viking 75 GCMS
Mass Spectrometer into the wet chemistry instrument. Mass spectrometry

of the gas chromatograph effluent would provide more definitive identifica-
tion of the actual chemical composition of the amino acid derivatives
identified in the gas chromatogram. A preliminary assessment of the
addition of the mass spectrometer shows an approximate weight addition
of 22 pounds and an additional volume requirement of 600 cubic inches.
The integration of the mass spectrometer in the wet chemistry instrument
is shown schematically in Figure 4-20.

PRELIMINARY ASSESSMENT

LANDER SOIL PROCESSOR

ELECTRICAL LANDER
SUBSYSTEM MOUNTING PLATE

X MECHANICAL
SUBSYSTEM

MASS
SPECTROMETER10.75

I11.60 - 13.50
19.50

APPROXIMATE WEIGHT ADDITION: 22 LB

APPROXIMATE VOLUME ADDITION: 600 IN3

Figure 4-20. Wet Chemistry/Mass Spectrometer Integration
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4.4 ELECTRONIC SUBSYSTEM

The Electronic Subsystem for the Wet Chemistry experiment has

been updated to incorporate the latest Viking 75 program requirements

and to conform to the updated instrument system design. The major

changes to the Electronic Subsystem from our previously reported design

(TRW Final Report No. 16660-6001-RO-00), include:

* Micro-programmed sequencing

" Addition of a memory

" New A/D converter design

" Improved definition of subsystem weight and power

requirements.

The instrument electronic subsystem will provide the regulated

power, data processing and all control functions for the instrument

operation. The subsystem design is based on flight-proven designs and

design techniques.

A block diagram of the main elements which compose the electronic

subsystem is shown in Figure 4-21. Digital techniques are used exten-

sively to eliminate the parameter drift problems associated with analog

circuitry. These techniques allow the subsystem to be packaged in the

allotted volume using conventional packaging methods. To make effec-

tive multiple use of functions, some functions are time-shared to mini-

mize the parts count.

The command processor receives, decodes, and distributes com-

mands from the lander. The commands are stored in the instrument

memory and relayed to Earth for command verification.

The sequencer directs the conduct of the instrument and the collec-

tion of data in accordance with a pre-established routine as modified by

commands and on-board instrument redirection.

All scientific and engineering data are analog by nature and are

processed by a 10-bit analog-to-digital converter, formatted and stored

in the instrument memory for subsequent transfer to Earth via the lander

data handling and telemetry system.
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Digital data generated by the instrument along with commands from

the Guidance Control and Sequencing Computer (GCSC) will be stored in

a solid state buffer memory. The storage capacity will be minimized to

reduce power consumption but without necessitating real time transfer to

the lander Data Acquisition and Processor Unit (DAPU).

Extensive use of power switching on low duty cycle circuits is used

to reduce average power consumed by the instrument. Also, system

heaters and valves are operated directly off of the raw bus to eliminate

conversion efficiency losses. The electronic subsystem power is pres-

ently estimated at 4. 6 watts continuous.

4.4. 1 Command Processing

Commands issued to the instrument from the GCSC have a serial

24-bit word structure. The commands, which are shifted into the instru-

ment with a GCSC clock, are bracketed by a Command Enable signal.

The rise of the Command Enable is used to power up the Command Pro-

cessor and the falling edge triggers the command decoding circuitry.

Upon activation of the decoding circuitry, the processor checks

the last 12 bits of the command for odd parity (the first 12 bits are dis-

carded). If the command passes parity check, the command is executed

and is stored in the memory. If the parity test is not passed, the instru-

ment loads the command directly into the memory without executing it.

A simplified block diagram of the Command Processor is shown in

Figure 4-22.

The required instrument commands that have been identified are

listed below. The Command Processor is not limited to the following

list and can be easily expanded to meet any requirement.

Command Number Command Function

1 Dump Memory

2 Activate Thermal IV's

3 Distribute Soil

4 Access Sequencer

5 Analysis No. 2

6 Analysis No. 3

7 Flight Status Activation
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COMMAND
DECODER

COMMANDS TO INSTRUMENT

Figure 4-22. Serial Command Processor Block Diagram

Commands 1, 2 and 3 are self-explanatory. Command 4 allows

access to any step within the sequence thus providing commandable

sequence changes. The fifth and sixth commands identify which analysis

is to be run with the first analysis as the default mode. Command 7 is

used to insure all latching relays and valves are in the correct flight

configuration.

4.4.2 Memory

The instrument will contain a solid-state MOS buffer memory capa-

ble of storing 2048 bits of data. The memory size (identical to VLBI)

represents a reasonable compromise between instrument power and

lander data rate compatibility. With the instrument running at its maxi-

mum data taking mode, a data transfer to the DAPU will only be required

approximately once every 1.5 minutes. Although the transfer rate is

well within the capability of the present lander, the instrument memory

size can easily be expanded or contracted if required by 79' mission

constraints.
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The memory is organized into 128 16-bit words. The 16-bit word

structure contains 12 data bits, 3 identification bits and a parity bit.

The data output formatting contains the required sync and identification

words as required by the lander and is completely compatible with the

DAPU hardware and software.

A block diagram of the memory is shown in Figure 4-23. Data are

written into the memory when either the Command Processor or A/D

Converter sends the memory an Access Request signal. When available,

the memory powers up, clocks in the data at 96 Kbps, assigns the ID

and parity bits and returns to a low power hold mode.

A memory read cycle will occur either by a commanded dump or

automatically when the memory is 3/4 full. Data transfer is accom-

plished through the standardized DAPU interface system as described in

the Wet Chemistry Instrument specification A-16231.

4. 4. 3 Instrument Sequencer

The Wet Chemistry sequencer is conceptually identical to the

sequencer presently used in the Biology Instrument. The sequencer was

INTERNAL CLOCK

MEMORY STORE
COMMAND DATA INPUT DATA READY

CONTROL
ENTER INHIBIT DATA SHIFT PULSE

SYNC
CELL SELECT UP/DOWN

REGISTER ADDRESS
WRITE REGISTER

CLOCK

SHIFT CLOCK

CELL SELECT
DECODER

PARITY BIT

DATA INPUT MEMORY
BUFFER MATRIX

DIGITAL DATA IN - DATA OUT

Figure 4-23. Random Access Memory Block Diagram
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micro-programmed for operational control. The sequencer operates

synchronously with the lander master clock and thus provides time

related control of all instrument functions.

The sequencer is organized in a sequential manner such that if not

commanded to change, it will proceed to run the experiment on a pre-

determined, internally stored, time basis. It is comrnmandable through

the lander and can be made to start, stop, mark time (hold its position),

change the way an experiment is to be run.

The micro-programming is performed with the use of 256 X 10

programmable read-only memories (ROM's). The sequencer contains

5 ROM's which are parallel addressed and thus provide 256 discrete

program steps (words). Each program step provides 50 bits of informa-

tion, which when decoded, are used to control the internal operation of

the sequencer and provide event signals to the instrument. (Events are

command signals produced by the sequencer which cause valve operations,

heater switching, etc.) Each program step is subdivided into two micro-

instructions. The first is 10-bits long (one ROM output) and is used

directly to provide time for the sequencer. This instruction determines

the time (in 30-second increments) between successive events and has a

range of approximately 30 to 30,000 seconds. If required, provisions

will be made to provide time intervals of less than 30 seconds. The

second micro-instruction of each program step contains both control and

event information. This instruction contains 40 bits of data and is decoded

to produce the required events.

A functional block diagram of the sequencer is shown in Figure

4-24. The operation of the sequencer is as follows:

Every 30 seconds after it is activated, the sequencer turns on and

compares the output of the Time ROM (first 10-bit micro-instruc-

tion) with its internal time counter. If they do not match, the

sequencer updates the time counter by one bit (equal to 30 sec) and

powers down. It then waits 30 seconds and makes another compar-

ison repeating this process until the outputs do match. When the

outputs do match, the second micro-instruction in that program

step is decoded and the event commands are sent to the rest of the

system. The sequencer then clears the time counter and updates
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Figure 4-24. Experiment Sequencer Block Diagram

the ROM address register thus providing access to the next sequen-

tial program step. It then powers down and waits for the next 30-

second period before it repeats the process. At the end of the

experiment, a self-contained disable command is decoded and the

sequencer stops.

4.4.4 Heater Control

The system contains 16 heaters which will be controlled by two

different methods. Eleven of the heaters control to 100C or 20 0 C,

respectively, and exact temperature control is not required. These

heaters will be controlled by mechanical thermostats which will be

mounted to the controlled surface. If the control range is determined to

be more critical or if the physical size of the thermostat makes mounting

prohibitive (as may be the case with the H-13 line heater), an electronic

thermostat will be used. The electronic thermostat (presently used on

VLBI) is extremely efficient (= 90 percent) and provides a control capa-

bility of ± 10C.
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The remaining five heaters (H-1, H-2, H-4, H-5 and H-6) will be

powered by pulse width modulated (PWM) heater controllers. This

method of control is very efficient for high power heaters and provides

close control. A functional block diagram of the PWM controller is

shown in Figure 4-25. A platinum sensor is used to provide temperature

feedback information to the controller error amplifier. The error amp

output is then amplified by a gain control buffer and fed into a comparator.

The amplified error signal is then compared with a ramp voltage gener-

ated by the heater preregulator. The heater preregulator is required

because of the wide variation in lander bus voltage (24 to 37 volts). The

circuit produces a PWM signal which is proportional to the bus voltage.

The comparator output controls the heater driver stage through an opti-

cally coupled isolator. The isolator is required because of lander

grounding isolation constraints. The gas chromatographic column heater

(H-5) also will require profile control. This will be accomplished by a

10-bit digital ramp control counter which will be fed into the gain control

buffer as an error signal. The ramp generator will provide a step reso-

lution of approximately 0.20C.

UNREGULATED
BUS

HEATER UNREGULATED
PREREGULATOR BUS

ERROR GAIN ISOLATION DRIVER

AMP CONTROL
AMP

TEMPSTEMP H-5 PROFILE
SENSOR GENERATOR

Figure 4-25. PWM Heater Controller
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4.4.5 Solenoid Valve and Soil Distribution Control

The instrument's solenoid valves for control of the gas actuated

control valves are controlled by a 6 by 7 relay matrix. The matrix can

control 42 valves. The matrix is controlled by the instrument sequencer

which provides the column and row signals which actuate the selected

relays and thus the selected valves. Relays are used in the matrix instead

of transistors because their inherent isolation capability allows us to

drive the valves directly from the lander bus resulting in a significant

power savings.

The soil distribution controller is a simple four-phase stepper

motor driver. Upon command from the sequencer, the controller drives

the stepper motor at a 40 Hz stepping rate until it receives a reverse

signal from the soil distribution assembly. It then reverses the phasing

of the drive pulses to the motor and returns it to its starting position.

The feedback position signals both from the reversal and stopping position

are provided by photodiode-phototransistor pairs.

4.4.6 Liquid Level Sensors

The time required for the evaporator effluent cannot be forecast

with any reasonable accuracy. For this reason a liquid level sensor is

installed in the line between each evaporator and ion exchange column.

The sensor is a conductivity detector consisting of a pair of closely

spaced electrodes in the liquid path. A layout design of the liquid sensor

is presented in Figure 4-26. The conductance ranges from approximately

10 - 4 mhos for wash water to 10 - 2 mhos for the HF-LiOH effluent. Even

with wet walls in the detector, the conductivity will be several orders of

magnitude less than that of water in the absence of a liquid stream. This

allows us to use simple conductance comparator circuits which control

the vent valves which in turn allow passage of the effluent into the ion

exchange column.

4.4.7 Analog Data Processing

Two kinds of data are produced by the instrument in the form of

analog voltages. These data are derived from the gas chromatography

low level electronics and the housekeeping functions. The housekeeping
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functions such as the data from the pressure transducers and temperature

sensors will be read out directly by the lander through the DAPU 8-bit

A/D converter.

The gas chromatography low level electronics output will be read

by the instruments internal 10-bit A/D converter. This conversion is

done internally because the DAPU converter can not provide the accuracy

and resolution required, nor can it sample the chromatogram at a fast

enough rate to resolve all of the peaks unambiguously.

The Analog to Digital Converter used in the instrument will be

identical to the converter used in VLBI. It is a 10-bit (i.e. 1 part in

1023) dual slope converter with an automatic zeroing correction loop.

The converter has an accuracy of 0. 1 percent + 1/2 LSB and when com-

manded by the sequencer will sample the chromatography sensor output a

at a rate of 1 per second. The output of the converter is a 12-bit digital

word. Ten of the bits are used for the analog measurement and the

remaining two bits are used for range switching identification. A func-

tional block diagram of the Wet Chemistry converter is shown in

Figure 4-27.

OFFSET
CORRECTION

LLE "A" OUTPUT

BUFFER INTEGRATOR - DISCRIMINATOR

MULTIPLEXER

LLE "B" OUTPUT

CONTROL 12 BIT REGISTER ] TO MEMORY
LOGIC

SEQUENCER
CONTROL

Figure 4-27. A/D Converter
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The low level electronics for the gas chromatography flame

ionization detector will have to be specially designed for this instrument.
-13

The electrometer will have to be sensitive down to the 10 ampere

range just to reach a signal to noise ratio of 1. The electrometer must

also have a range of 6 decades which will be handled by automatic gain

switching.

Figures 4-28 and 4-29 show a basic design configuration which

would be used in the instrument. It uses an LM108A op-amp whose

input characteristics are improved by a FET source-follower pair. The

electrometer connection, with current feedback to the inverting input,

eliminates the effect of stray input and ionization chamber capacities on

performance; it also makes cable and input connector leakages non-
11-

critical. Since the FET input resistance is 10 ohms, the loop gain

almost equals the op-amp gain and linearity is better than 0.01 percent.

Common-mode rejection of supply variations and input voltage

drift are both guaranteed by the use of current source biasing by another

FET at the zero-temperature-coefficient point. The crucial parameter

in an electrometer circuit is the input bias current drift; the input cir-

cuit has been designed to minimize it.

+12V 107 RF

, 10 9 F111N I O, F1
FROM HYFID ,'l-- - i11 RF

ATO
+12 B A/D

+12
2N5906

100K G =5 G =10

-12

- - A4_, ALL AMPLIFIERS ARE LM108A
C + S3 +

Figure 4-28. Wide Dynamic Range Electrometer
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Figure 4-29. Basic Electrometer Circuit

4.4.8 Power Conditioning and Distribution

The Wet Chemistry Instrument contains a primary power supply to

provide the regulated bias voltages required by the instrument and a

separate thermal electric power supply. The thermal electric cooler

requires a separate supply because the power it requires ( =1.3 v at

1 amp) could not be efficiently provided by the primary supply.

The primary supply for the instrument is identical to the supply

used in VLBI. A block diagram of the primary supply is shown in

Figure 4-30. This configuration combines a switching regulator and a

dc-dc converter by pulse width modulating the drive waveform to the

inverter transistors. The average voltage at each of the converter

transformer secondaries is held constant to the desired precision. This

configuration requires an inductance input filter for each of the output

voltages. The size and weight of the magnetic components is minimized

by using ferrite core material and operating at a switching frequency of

approximately 30 KHz. The overall power conversion efficiency will be

about 75 percent.
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The thermal electric (TE) cooler power supply will be a modified

version of the TE supply presently in VLBI. The supply combines a

switching ripple regulator with a thermal control circuit. The thermal

control circuit is used to sense the temperature of the derivatizer and to

turn the TE supply on or off to maintain a predetermined temperature.

By controlling the supply directly, we are able to reduce the efficiency

losses due to external cooler power switching.

4.4.9 Mechanical Packaging Design

The mechanical design of the electronic subsystem affords low

design cost, low manufacturing cost, ease of component replacement and

excellent flexibility to incroporate development circuit design changes.

The component to volume ratio is such that circuits may be added,

changed or deleted as required during the development phase without

causing a major design cost impact. There is a growth factor allowance

of 10 percent for the package. The preliminary design is to have the

power supply and regulating circuits on one circuit board, 60 percent of

the flat packs on one board, and the signal conditioning circuits on three

circuit boards. The board placement is such that one additional flat

pack or signal conditioning board may be added. All circuit boards are

multi-layered to reduce size and thus the weight of the instrument. The

initial component count is 1160. The volume allocated to the electrical

subsystem is 11.6 by 10.75 by 4.5 inches.

The packaging design will be similar to that in VLBI. The boards

will be mounted in machined housings and interconnected by an ESS/MSS

harness. Internal wiring between boards located in the same housing will

be done by flex cable. EMI shields will be used between housing for

minimizing circuit cross-talk and interference problems.

High density Cannon "Golden D" connectors will be used for internal

instrument (ESS to MSS) wiring and the Viking standard connectors for

lander interface.

The present estimated weight of the electronic subsystem and

interconnect harness is 9 pounds.
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5. CONCLUSIONS AND RECOMMENDATIONS

TRW believes that the breadboard study program reported herein has

clearly demonstrated the feasibility of an automated wet chemistry instru-

ment for the isolation and measurement of amino acids and their optical

isomer ratios at the nanomole level within the constraints of the weight,

power, volume and other lander interface specifications. The performance

of the critical components of the design has been demonstrated with a

prototype breadboard whose design duplicated as closely as practicable all

aspects of the flight design which might affect the instrument capabilities,

including internal cell geometry, interconnecting valves and plumbing,

materials exposed to the reagents, sequencing, and vent pressures. Con-

ceptual designs and design adaptions of Viking Lander Biology Instrument

hardware have been prepared for the remaining components required to

support the analysis. These include gas supplies, reagent injectors and

the thermoelectric cooler/heat pipe assembly.

The breadboard testing was carried out with Process No. I which

uses acid hydrolysis directly on the soil, rather than the new baseline

Process No. 2 in which hydrolysis is performed on a water extract of the

soil, but the overall processes are similar, and Process No. 2 does not

have any operations that are significantly different from the operations in

Process No. 1. Furthermore, Process No. 2 is significantly simpler,

and certain problems did arise from interferences in Process No. i which

will be eliminated or greatly reduced with the baseline Process No. 2.

Some processing problems still remain, but we feel that although further

study is required, solutions for these problems can be obtained within the

context of a breadboard study program.

We recommend that to continue the orderly development of this instru-

ment that the wet chemistry instrument breadboard fabricated and tested

in this study be redesigned, refurbished and modified for optimum use

with the new baseline Process No. 2, and that additional testing be carried

out to solve the remaining interference problems and to demonstrate the

performance of the instrument with the new baseline process.

The test program should include the following tasks: i) laboratory

tests to evaluate process modifications developed by NASA/ARC and to
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establish prototype instrument operating conditions for the revised process;

2) evaluation of filter requirements and filter materials for the baseline

Process No. 2; 3) identification of the source of and solution of the inter-

ference problem with the derivatizer; 4) investigation of the use of a state-

of-the-art electron capture detector in place of/or in addition to the flame

ionization detector, especially in regard to their relative sensitivities for

interferences; 5) step-by-step evaluation of the performance of each bread-

board component for its function in the process sequence, and laboratory

tests in glassware for control analyses; 6) breadboard performance demon-

stration tests with radiotracers, NASA/ARC supplied soils and amino

acid-free soils; and finally, 7) revision of the flight design concept based

upon the breadboard program results.
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APPENDIX

Processing Sequence No. 1 - used for all breadboard tests (from

NASA/ARC Specification A-16231, Rev 1, Jan. 4, 1972).

Experiment Sequence - The following is a typical experiment

sequence. The reagent volumes are given for a 1 cubic centimeter soil

sample. Derivatization assumes one (1) micromole of each of the protein

amino acids for the reagent volumes.

Step 1. Place a 1 cubic centimeter soil sample in a chamber.

Step 2. Add 7.5 milliliters of 6N HC1 (aqueous).

Step 3. Heat to 1100C in closed chamger for 16 hours.

Step 4. Filter off the insoluble soil residue.

Step 5. Wash the soil residue with 5 milliliters of water and

filter off the soil residue.

Step 6. The amino acids and dissolved salts in HC1 (Combined

filtrates from steps 4 and 5) are then evaporated to
dryness.

Step 7. After evaporating to dryness (final heat at 100 0 C),
dissolve the amino acids in 10 milliliters of water.

(It may be necessary to heat a short time to assure

solution. )

Step 8. Allow to cool to below 35 0 C. Add 9 milliliters of 5N HF.
Mix for 5 minutes. (Gas bubbling is acceptable. )

Step 9. Add 9. 2 milliliters of 5N NaOH to adjust pH to 7-11.
Continue to mix for 15 minutes.

Step 10. Filter solution and place filtrate on strong cation exchange
column for amino acid exchange, cation and neutral

organic removal. Follow the filtrate immediately with
10 milliliters of water added to the previous chamber
(Steps 6 to 9) and forced through the precipitate and onto
the ion exchange column. Follow this with 30 milliliters
of water directly onto the ion exchange column. Follow
this with 10 milliliters of 4N NH 4 0H and start collecting
the amino acids when the ammonia begins to break through
the ion exchange column. Collect only the first 7 milli-
liters. (The reagent volumes for Step 10 are given for
a 30 milliliter Dowex 50 x 8 (H+) column.
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Step 11. Evaporate the amino acid solution to dryness at 100 0 C.

Step 12. To the dried sample and 2 milliliters of (+) 2-butanol
containing sufficient anhydrous HC1 to make it 4N.

Step 13. Heat solution to 100 0 C in a closed chamber for 3 hours.

Step 14. Evaporate to dryness. Cool to below 35 0 C.

Step 15. To the dried sample add 0. 2 milliliter trifluoroacetic
anhydride and 0. 2 milliliter of methylene chloride.
Heat in a closed chamber for one hour at 35-400 C.

Step 16. Evaporate the solvent at a temperature below 100 C.

Step 17. The resultant sample is analyzed for composition by
gas chromatography.
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Processing Sequence No. 2. New baseline processing sequence

adopted for the updated flight concept (from NASA/ARC Specification

A-16231, Rev 3, October 15, 1973).

Experiment Sequence. The following is a typical experiment

sequence. The reagent volumes are given for a 1 cubic centimeter soil

sample. Derivatization assumes one (1) micromole of each of the

protein amino acids for the reagent volumes.

Step 1. Place a 1 cubic centimeter soil sample in a chamber.

Step 2. Add 10 milliliters of water.

Step 3. Heat to 165 ±+50 C for 1 hour.

Step 4. Allow to cool and filter off the insoluble soil residue.

Step 5. Add 10 milliliters of 6N CH1 to the filtrate from Step 4.

Step 6. Heat solution to 1100C for 5 hours.

Step 7. Evaporate to dryness.

NOTE: The following step is performed on the ion exchange
column prior to proceeding to Step 9. The reagent
volumes for Step 8 are given for a 5 milliliter Dowex
50M+ column.

Step 8. Place 10 milliliters of 4N NaOH on ion exchange column.
Follow this with 20 milliliters of water directly onto the
ion exchange column. Follow this with 15 milliliters of
6N HC1 directly onto the ion exchange column. Follow
this with 20 milliliters of water directly onto the ion
exchange column.

Step 9. After evaporating to dryness (Step 7), dissolve the amino
acids and residual salts in 5 milliliters of water. (It may
be necessary to heat a short time to assure solution.)

Step 10. Place solution (Step 9) on strong cation exchange column
for amino acid exchange, cation and neutral organic
removal. Follow the amino acid solution immediately
with 15 milliliters of water directly onto the ion exchange
column. Follow this with 10 milliliters of 4N NH 4 0H and
start collecting the amino acids when the ammonia begins
to break through the ion exchange column. Collect only
the first 1 to 2 milliliters.

Step 11. Evaporate the amino acid solution to dryness at 1000C.
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Step 12. To the dried sample add 0. 5 milliliters of (+) 2-butanol
containing sufficient anhydrous HC1 to make it 4N.

Step 13. Heat solution to 100 0 C in a closed chamber for 2 hours.

Step 14. Evaporate to dryness. Cool to below 35 0 C.

Step 15. To the dried sample add 0. 1 milliliters of trifluoracetic
anhydride and 0. 4 milliliters of methylene chloride. Heat
in a closed chamber for one hour at 35-400 C.

Step 16. Evaporate the solvents at a temperature below 100 C.

Step 17. The resultant sample is analyzed for composition by gas
chromatography.
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